DATA SCIENCE STUDIES
a focus on storytelling
DOI:
https://doi.org/10.31510/infa.v20i2.1802Keywords:
Data Science, Storytellign, Data Processing, Description of ExperiencesAbstract
This work addresses the area of Data Science through descriptive and exploratory analysis, and through interviews with a specialist in the area with the objective of presenting successful and unsuccessful cases to help companies understand and use the principles of Data Science of Data. The reporting of these cases is known as Storytelling, which according to the literature involves experiences told in order to be analyzed, revealing patterns, trends and challenges, as well as involving a practice that enables insights and knowledge for decision making. It is expected to show benefits, challenges and impacts that Data Science can cause in companies through case reports in order to better understand and choose the implementation of such a concept.
Downloads
Metrics
References
AMARAL, F. Introdução a ciência de dados: mineração de dados e Big Data. Rio de Janeiro: Alta Books, 2016.
ANKERKAR, R. Artificial Intelligence for Business. Cham - Suiça: Springer, 2019.
BELL, G. Foreword. The fourth paradigm: data-intensive scientific discovery. In: HEY, T.; TANSLEY, S.; TOLLE, K. M. Redmond, WA: Microsoft Research, p. 11-14, 2009.
CIELEN et al. Introducing Data Science. New York – Estados Unidos: Manning, 2016.
DAVENPORT, T. H.; PATIL, D. J. Data Scientist: The Sexiest Job of the 21st Century. Harvard Business Review, v. 90, n. 10, p. 70-128, 2012. Disponível em: https://www.researchgate.net/publication/232279315_Data_Scientist_The_Sexiest_Job_of_the_21st_Century. Acesso em: 30 ago. 2023.
DEAN, J. Big data, data mining, and machine learning: value creation for business leaders and practitioners. New Jersey – Estados Unidos: Wiley, 2014. DOI: https://doi.org/10.1002/9781118691786
FOG et al. Storytelling: Branding in Pratice. Berlim: Springer, 2010. DOI: https://doi.org/10.1007/978-3-540-88349-4
LEITE, F.; POSSA, A. Metodologia da Pesquisa Científica. 2. ed. Florianópolis: IFSC, 2013.
NETTO, A; MACIEL, F. Python para Data Science. Rio de Janeiro: Alta Books, 2021.
PYTON, Python. About. Python.org, 2023. Disponível em: https://www.python.org/about/. Acesso em: 30 ago. 2023.
SAMPIERI, R.; COLLADO, C.; LUCIO, M. Metodologia de Pesquisa. Porto Alegre: Penso, 2013.
SEVERINO, A. Metodologia da Pesquisa Científica. 23. ed. São Paulo: Cortez, 2007.
SHARDA et al. Business Intelligence e Análise de Dados para gestão do negócio. Porto Alegre: Bookman, 2019.
SILVA et al. Introdução à mineração de dados: Com aplicações em R. Rio de Janeiro: Elsevier, 2016.
SOUZA, A. S.; OLIVEIRA, G. S.; ALVES, L. H. A pesquisa bibliográfica: princípios e fundamentos. Monte Carmelo: FUCAMP, v. 20, n. 43, p. 64-66, 2021.
RASCHKA, S. Python Machine Learning. Birmingham – Reino Unido: Packt, 2015.
VANDERPLAS, J. Python Data Science Handbook. 1. ed. Sebastopol – Estados Unidos: Editora O’Reilly Media, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Interface Tecnológica
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados pertencem à revista Interface Tecnológica e seguem o padrão Creative Commons (CC BY 4.0), que permite o remixe, adaptação e criação de obras derivadas do original, mesmo para fins comerciais. As novas obras devem conter menção ao(s) autor(es) nos créditos.
- Abstract 147
- PDF (Português (Brasil)) 85