CLASSIFICATION OF PRECISION AGRICULTURE BASED ON MONITORING CHARACTERISTICS

Authors

DOI:

https://doi.org/10.31510/infa.v21i1.1846

Keywords:

Farm automation, Management, On-board technology, Agriculture 4.0

Abstract

Precision agriculture (PA) has made significant contributions to the ongoing effort of generating data to monitor crops and developing novel approaches for efficiently managing agricultural inputs. Given the progress made in recent decades, the objective of this study was to establish a criterion for categorizing the different types of PA into a classification system capable of evolution highlighting this technology. As a result, the criterion based on crop monitoring characteristics was considered appropriate for delineating the classes, as it facilitates the grouping of similar technologies. Utilizing the selected classification criteria, four fundamental types of PA were delineated: Class 1, centered on harvest monitoring; Class 2, employing remote sensing monitoring throughout the crop cycle; Class 3, relying on proximal sensors installed in the crop; and Class 4, wherein management practices are assisted by real-time monitoring of the crop area. The delineation of the four classes enables the organization of precursor and contemporary PA technologies in a straightforward and accessible manner. Moreover, the suggested classification system exhibits flexibility to accommodate supplementary classes or categorical levels as novel technologies are assimilated into agricultural production systems.

Downloads

Metrics

Visualizações em PDF
16
Jan 28 '25Jan 31 '25Feb 01 '25Feb 04 '25Feb 07 '25Feb 10 '25Feb 13 '25Feb 16 '25Feb 19 '25Feb 22 '25Feb 25 '252.0
|

References

BLOK, V.; GREMMEN, B. Agricultural technologies as living machines: Toward a biomimetic conceptualization of smart farming Technologies. Ethics, Policy & Environment, v. 21, n. 2, p. 246-263, 2018. DOI: https://doi.org/10.1080/21550085.2018.1509491

CANICATTÌ, M.; VALLONE, M. Drones in vegetable crops: A systematic literature review. Smart Agricultural Technology, v. 7, p. 100396, 2024. DOI: https://doi.org/10.1016/j.atech.2024.100396

CARLESSO, R.; PETRY, M.T.; TROIS, C. The use of a meteorological station network to provide crop water requirement information for irrigation management. IFIP International Federation for Information Processing, v. 293, p. 19-27, 2009. DOI: https://doi.org/10.1007/978-1-4419-0209-2_3

CHAMARA, N.; ISLAM, MD D.; BAI, G.; SHI, Y.; GE, Y. Ag-IoT for crop and environment monitoring: Past, present, and future. Agricultural Systems, v. 203, p. 103497, 2022. DOI: https://doi.org/10.1016/j.agsy.2022.103497

FRANZEN, D.; MULLA, D. A history of precision agriculture. In: Zhang, Qin (Ed.). Precision agriculture technology for crop farming. 1 ed. CRC Press, 2015. p.1-19. DOI: https://doi.org/10.1201/b19336-1

GONÇALVES, V. P.; CAVICHIOLI, F. A. Estudo das funcionalidades dos drones na agricultura. Interface Tecnológica, v. 18, n. 1, p. 321-331, 2021. DOI: https://doi.org/10.31510/infa.v18i1.1126

HARDIE, M. Review of novel and emerging proximal soil moisture sensors for use in agriculture. Sensors (Switzerland), v. 20, n. 23, p. 6934, 2020. DOI: https://doi.org/10.3390/s20236934

ISPA. The International Society of Precision Agriculture. Precision Ag Definition, January 2021. Disponível em: <https://www.ispag.org/about/definition>. Acesso em: 22 jan. 2023.

JÚNIOR, J. C. A.; NUÑEZ, D. N. C. O uso de drones na agricultura 4.0. Brazilian Journal of Science, v. 3, n. 1, p. 1-13, 2024. DOI: https://doi.org/10.14295/bjs.v3i1.438

KAMIENSKI, C.; SOININEN, J.-P.; TAUMBERGER, M.; DANTAS, R.; TOSCANO, A.; CINOTTI, T.S.; MAIA, R.F.; NETO, A.T. Smart water management platform: IoT-based precision irrigation for agriculture. Sensors (Switzerland), v. 19, n. 2, p. 276, 2019. DOI: https://doi.org/10.3390/s19020276

KHAIRE, P.; ATTAR, V.; KALAMKAR, S. A Comprehensive Survey of Weed Detection and Classification Datasets for Precision Agriculture. In: 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi: India, 2023. DOI: https://doi.org/10.1109/ICCCNT56998.2023.10306880

KLERKX, L.; JAKKU, E.; LABARTHE, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences, v. 90-91, n. 1, p.1-16, 2019. DOI: https://doi.org/10.1016/j.njas.2019.100315

LATINO, M.E.; CORALLO, A.; MENEGOLI, M.; NUZZO, B. Agriculture 4.0 as Enabler of Sustainable Agri-Food: A Proposed Taxonomy. IEEE Transactions on Engineering Management, v. 70, n. 10, p. 3678-3696, 2023. DOI: https://doi.org/10.1109/TEM.2021.3101548

MERRIAM-WEBSTER. “Classification”. https://www.merriam-webster.com/dictionary/classification. Acesso em: 28 jan. 2024.

NOWAK, B. Precision agriculture: Where do we stand? A review of the adoption of precision agriculture technologies on field crops farms in developed countries. Agricultural Research, v. 10 n. 4, p. 515-522, 2021. DOI: https://doi.org/10.1007/s40003-021-00539-x

PROGRAMA DAS NAÇÕES UNIDAS PARA O DESENVOLVIMENTO (PNUD). 2021. Disponível em: https://www.undp.org/pt/brazil/publications/relatorio-anual-2021 Acesso em: 14 jun. 2024.

RADOČAJ, D.; ŠILJEG, A.; MARINOVIĆ, R.; JURIŠIĆ, M. State of major vegetation indices in precision agriculture studies indexed in Web of Science: A review. Agriculture (Switzerland), v. 13, n. 3, p. 707, 2023. DOI: https://doi.org/10.3390/agriculture13030707

ROBERT, P.C.; RUST, R.H.; LARSON, W.E. Preface of Proceedings of Site-Especific Management for Agricultural Systems. In: ROBERT, P.C.; RUST, R.H.; LARSON, W.E. (Eds.). Proceedings of Site-Especific Management for Agricultural Systems. 2 ed. International Conference: Minneapolis, MN, USA, 1994. DOI: https://doi.org/10.2134/1995.site-specificmanagement

ROSE, D.C.; CHILVERS, J. Agriculture 4.0: Broadening responsible innovation in a era of smart farming. Frontiers in Sustainable Food Systems, v. 2, 2018. DOI: https://doi.org/10.3389/fsufs.2018.00087

ROSE; D.C.; SUTHERLAND, W.J.; PARKER, C.; LOBLEY, M.; WINTER, M.; MORRIS, C.; TWINING, S.; FFOULKES, C.; AMANO, T.; DICKS, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, v.149, p. 165-174, 2016. DOI: https://doi.org/10.1016/j.agsy.2016.09.009

SHEPHERD, M.; TURNER, J.A.; SMALL, B.; WHEELER, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric., v. 100, n. 14, p.5083-5092, 2020. DOI: https://doi.org/10.1002/jsfa.9346

SU, W.-H. Crop plant signaling for real-time plant identification in smart farm: A systematic review and new concept in artificial intelligence for automated weed control. Artificial Intelligence in Agriculture, v. 4, p. 262–271, 2020. DOI: https://doi.org/10.1016/j.aiia.2020.11.001

UNDP. United Nations Development Programme. Precision agriculture for smallholder farmers. UNDP Global Centre for Technology, Innovation and Sustainable Development: Singapore, 2021. 80p. Disponível em: https://www.undp.org/sites/g/files/zskgke326/files/2021-10/UNDP-Precision-Agriculture-for-Smallholder-Farmers.pdf Acesso em: 15 ago. 2023.

VIAN, A.L.; BREDEMEIER, C.; PIRES, J.L.F.; CORASSA, G.M.; VANIN, J.P. Aplicações da agricultura de precisão na cultura da soja. In: MARTIN, T.N.; PIRES, J.L.F.; VEY, R.T. (Eds.). Tecnologias aplicadas para o manejo rentável e eficiente da cultura da soja. Santa Maria: Editora GR, 2022. p.275-296

ZANIN, A.R.A.; NEVES, D.C.; TEODORO, L.P.R.; DA SILVA JÚNIOR, C.A.; DA SILVA S.P.; TEODORO P.E.; BAIO, F.H.R. Reduction of pesticide application via real-time precision spraying. Scientific Report, v. 12, n. 1, p. 5638, 2022. DOI: https://doi.org/10.1038/s41598-022-09607-w

Published

2025-01-28

How to Cite

PITTOL MARTINI , L. C. .; SOUZA TEIXEIRA, M. CLASSIFICATION OF PRECISION AGRICULTURE BASED ON MONITORING CHARACTERISTICS. Revista Interface Tecnológica, Taquaritinga, SP, v. 21, n. 1, p. 507–519, 2025. DOI: 10.31510/infa.v21i1.1846. Disponível em: https://revista.fatectq.edu.br/interfacetecnologica/article/view/1846. Acesso em: 15 mar. 2025.

Issue

Section

Tecnologia em Agronegócio
Crossref
0
Scopus
0
Views
  • Abstract 37
  • PDF (Português (Brasil)) 16
Métricas