CLASSIFICATION OF PRECISION AGRICULTURE BASED ON MONITORING CHARACTERISTICS
DOI:
https://doi.org/10.31510/infa.v21i1.1846Keywords:
Farm automation, Management, On-board technology, Agriculture 4.0Abstract
Precision agriculture (PA) has made significant contributions to the ongoing effort of generating data to monitor crops and developing novel approaches for efficiently managing agricultural inputs. Given the progress made in recent decades, the objective of this study was to establish a criterion for categorizing the different types of PA into a classification system capable of evolution highlighting this technology. As a result, the criterion based on crop monitoring characteristics was considered appropriate for delineating the classes, as it facilitates the grouping of similar technologies. Utilizing the selected classification criteria, four fundamental types of PA were delineated: Class 1, centered on harvest monitoring; Class 2, employing remote sensing monitoring throughout the crop cycle; Class 3, relying on proximal sensors installed in the crop; and Class 4, wherein management practices are assisted by real-time monitoring of the crop area. The delineation of the four classes enables the organization of precursor and contemporary PA technologies in a straightforward and accessible manner. Moreover, the suggested classification system exhibits flexibility to accommodate supplementary classes or categorical levels as novel technologies are assimilated into agricultural production systems.
Downloads
Metrics
References
BLOK, V.; GREMMEN, B. Agricultural technologies as living machines: Toward a biomimetic conceptualization of smart farming Technologies. Ethics, Policy & Environment, v. 21, n. 2, p. 246-263, 2018. DOI: https://doi.org/10.1080/21550085.2018.1509491
CANICATTÌ, M.; VALLONE, M. Drones in vegetable crops: A systematic literature review. Smart Agricultural Technology, v. 7, p. 100396, 2024. DOI: https://doi.org/10.1016/j.atech.2024.100396
CARLESSO, R.; PETRY, M.T.; TROIS, C. The use of a meteorological station network to provide crop water requirement information for irrigation management. IFIP International Federation for Information Processing, v. 293, p. 19-27, 2009. DOI: https://doi.org/10.1007/978-1-4419-0209-2_3
CHAMARA, N.; ISLAM, MD D.; BAI, G.; SHI, Y.; GE, Y. Ag-IoT for crop and environment monitoring: Past, present, and future. Agricultural Systems, v. 203, p. 103497, 2022. DOI: https://doi.org/10.1016/j.agsy.2022.103497
FRANZEN, D.; MULLA, D. A history of precision agriculture. In: Zhang, Qin (Ed.). Precision agriculture technology for crop farming. 1 ed. CRC Press, 2015. p.1-19. DOI: https://doi.org/10.1201/b19336-1
GONÇALVES, V. P.; CAVICHIOLI, F. A. Estudo das funcionalidades dos drones na agricultura. Interface Tecnológica, v. 18, n. 1, p. 321-331, 2021. DOI: https://doi.org/10.31510/infa.v18i1.1126
HARDIE, M. Review of novel and emerging proximal soil moisture sensors for use in agriculture. Sensors (Switzerland), v. 20, n. 23, p. 6934, 2020. DOI: https://doi.org/10.3390/s20236934
ISPA. The International Society of Precision Agriculture. Precision Ag Definition, January 2021. Disponível em: <https://www.ispag.org/about/definition>. Acesso em: 22 jan. 2023.
JÚNIOR, J. C. A.; NUÑEZ, D. N. C. O uso de drones na agricultura 4.0. Brazilian Journal of Science, v. 3, n. 1, p. 1-13, 2024. DOI: https://doi.org/10.14295/bjs.v3i1.438
KAMIENSKI, C.; SOININEN, J.-P.; TAUMBERGER, M.; DANTAS, R.; TOSCANO, A.; CINOTTI, T.S.; MAIA, R.F.; NETO, A.T. Smart water management platform: IoT-based precision irrigation for agriculture. Sensors (Switzerland), v. 19, n. 2, p. 276, 2019. DOI: https://doi.org/10.3390/s19020276
KHAIRE, P.; ATTAR, V.; KALAMKAR, S. A Comprehensive Survey of Weed Detection and Classification Datasets for Precision Agriculture. In: 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi: India, 2023. DOI: https://doi.org/10.1109/ICCCNT56998.2023.10306880
KLERKX, L.; JAKKU, E.; LABARTHE, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences, v. 90-91, n. 1, p.1-16, 2019. DOI: https://doi.org/10.1016/j.njas.2019.100315
LATINO, M.E.; CORALLO, A.; MENEGOLI, M.; NUZZO, B. Agriculture 4.0 as Enabler of Sustainable Agri-Food: A Proposed Taxonomy. IEEE Transactions on Engineering Management, v. 70, n. 10, p. 3678-3696, 2023. DOI: https://doi.org/10.1109/TEM.2021.3101548
MERRIAM-WEBSTER. “Classification”. https://www.merriam-webster.com/dictionary/classification. Acesso em: 28 jan. 2024.
NOWAK, B. Precision agriculture: Where do we stand? A review of the adoption of precision agriculture technologies on field crops farms in developed countries. Agricultural Research, v. 10 n. 4, p. 515-522, 2021. DOI: https://doi.org/10.1007/s40003-021-00539-x
PROGRAMA DAS NAÇÕES UNIDAS PARA O DESENVOLVIMENTO (PNUD). 2021. Disponível em: https://www.undp.org/pt/brazil/publications/relatorio-anual-2021 Acesso em: 14 jun. 2024.
RADOČAJ, D.; ŠILJEG, A.; MARINOVIĆ, R.; JURIŠIĆ, M. State of major vegetation indices in precision agriculture studies indexed in Web of Science: A review. Agriculture (Switzerland), v. 13, n. 3, p. 707, 2023. DOI: https://doi.org/10.3390/agriculture13030707
ROBERT, P.C.; RUST, R.H.; LARSON, W.E. Preface of Proceedings of Site-Especific Management for Agricultural Systems. In: ROBERT, P.C.; RUST, R.H.; LARSON, W.E. (Eds.). Proceedings of Site-Especific Management for Agricultural Systems. 2 ed. International Conference: Minneapolis, MN, USA, 1994. DOI: https://doi.org/10.2134/1995.site-specificmanagement
ROSE, D.C.; CHILVERS, J. Agriculture 4.0: Broadening responsible innovation in a era of smart farming. Frontiers in Sustainable Food Systems, v. 2, 2018. DOI: https://doi.org/10.3389/fsufs.2018.00087
ROSE; D.C.; SUTHERLAND, W.J.; PARKER, C.; LOBLEY, M.; WINTER, M.; MORRIS, C.; TWINING, S.; FFOULKES, C.; AMANO, T.; DICKS, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, v.149, p. 165-174, 2016. DOI: https://doi.org/10.1016/j.agsy.2016.09.009
SHEPHERD, M.; TURNER, J.A.; SMALL, B.; WHEELER, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric., v. 100, n. 14, p.5083-5092, 2020. DOI: https://doi.org/10.1002/jsfa.9346
SU, W.-H. Crop plant signaling for real-time plant identification in smart farm: A systematic review and new concept in artificial intelligence for automated weed control. Artificial Intelligence in Agriculture, v. 4, p. 262–271, 2020. DOI: https://doi.org/10.1016/j.aiia.2020.11.001
UNDP. United Nations Development Programme. Precision agriculture for smallholder farmers. UNDP Global Centre for Technology, Innovation and Sustainable Development: Singapore, 2021. 80p. Disponível em: https://www.undp.org/sites/g/files/zskgke326/files/2021-10/UNDP-Precision-Agriculture-for-Smallholder-Farmers.pdf Acesso em: 15 ago. 2023.
VIAN, A.L.; BREDEMEIER, C.; PIRES, J.L.F.; CORASSA, G.M.; VANIN, J.P. Aplicações da agricultura de precisão na cultura da soja. In: MARTIN, T.N.; PIRES, J.L.F.; VEY, R.T. (Eds.). Tecnologias aplicadas para o manejo rentável e eficiente da cultura da soja. Santa Maria: Editora GR, 2022. p.275-296
ZANIN, A.R.A.; NEVES, D.C.; TEODORO, L.P.R.; DA SILVA JÚNIOR, C.A.; DA SILVA S.P.; TEODORO P.E.; BAIO, F.H.R. Reduction of pesticide application via real-time precision spraying. Scientific Report, v. 12, n. 1, p. 5638, 2022. DOI: https://doi.org/10.1038/s41598-022-09607-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Interface Tecnológica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados pertencem à revista Interface Tecnológica e seguem o padrão Creative Commons (CC BY 4.0), que permite o remixe, adaptação e criação de obras derivadas do original, mesmo para fins comerciais. As novas obras devem conter menção ao(s) autor(es) nos créditos.
- Abstract 37
- PDF (Português (Brasil)) 16