TOPIC ANALYSIS ON SOCIAL NETWORKS USING NATURAL LANGUAGE PROCESSING (NLP)

Authors

DOI:

https://doi.org/10.31510/infa.v20i2.1750

Keywords:

Topic analysis, Natural Language, Data analysis, Artificial intelligence, Machine learning

Abstract

This article investigates the role of Natural Language Processing (NLP) in topic analysis on social networks. It discusses the fundamentals of NLP, its main challenges, and techniques, as well as illustrating how they contribute to the understanding and processing of human language by Artificial Intelligence systems. Through a qualitative study, data from Twitter/X and Reddit were collected and processed using each platform's API and data scraping techniques. The collected data were cleaned and normalized, then analyzed using NLP techniques such as lemmatization, the bag of words method, and TF-IDF. The main objective of the study is to develop a solid understanding of NLP and its techniques, and to apply them to relevant data collected from social networks to identify trends and relevant topics. This investigation highlights the importance of NLP in today's digital world, where data analysis on social platforms has become crucial to understand trends and behaviors. The article also emphasizes the relevance of advanced NLP techniques in extracting meaningful insights from large textual datasets and in overcoming the challenges inherent to human language.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

ALVES, Igor Nascimento. Lemmatization vs. stemming: quando usar cada uma?. quando usar cada uma?. 2021. Disponível em: https://www.alura.com.br/artigos/lemmatization-vs-stemming-quando-usar-cada-uma. Acesso em: 17 jun. 2023.

BIRD, Steven; KLEIN, Ewan. Natural Language Processing with Python: analyzing text

with the natural language toolkit. S.I: O'Reilly Media, 2009.

BISHOP, Christopher M. Pattern Recognition and Machine Learning. 2. ed. S.I: Springer, 2011. 738 p.

BLEI, David M.; NG, Andrew Y.; JORDAN, Michael I.. Latent Dirichlet Allocation. Journal

Of Machine Learning. S.I, p. 993-1022. 03 jan. 2003. Disponível em:

https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf. Acesso em: 15 jun. 2023.

CASTELLS, Manuel. A sociedade em rede. 24. ed. São Paulo: Paz e Terra, 2013. 630p.

FONSECA, Camilla. Introdução a Bag of Words e TF-IDF. 2020. Disponível em: https://medium.com/turing-talks/introdução-a-bag-of-words-e-tf-idf-43a128151ce9. Acesso em: 20 nov. 2023.

JURAFSKY, Daniel; MARTIN, James H.. Speech and Language Processing: an introduction to natural language processing, computational linguistics, and speech recognition. S.I: Prentice Hall, 2006.

LIMA, Vera Lúcia Strube de; NUNES, Maria das Graças Volpe; VIEIRA, Renata. Desafios do Processamento de Línguas Naturais. Semish, São Carlos, p. 1-15, 2007.

NADKARNI, Prakash M; OHNO-MACHADO, Lucila; CHAPMAN, Wendy W. Natural language processing: an introduction. Jamia: Journal of the American Medical Informatics Association. S.I, p. 544-551. 05 set. 2011. Disponível em: https://academic.oup.com/jamia/article/18/5/544/829676?login=false. Acesso em: 01 set. 2023. DOI: https://doi.org/10.1136/amiajnl-2011-000464

PREMEBIDA, Sthefanie Monica. Guia de NLP: conceitos e técnicas. conceitos e técnicas. 2021. Disponível em: https://www.alura.com.br/artigos/guia-nlp-conceitos-tecnicas. Acesso em: 17 jun. 2023.

SANTOS, Dheiver. Introdução ao Pré-processamento de Texto em NLP: uma visão prática. 2020. Disponível em: https://medium.com/@dheiver.santos_10420/título-introdução-ao-pré-processamento-de-texto-em-nlp-uma-visão-prática. Acesso em: 20 nov. 2023.

TEJA, Sai. Stop Words in NLP. 2020. Disponível em: https://medium.com/@saitejaponugoti/stop-words-in-nlp-5b248dadad47. Acesso em: 20 nov. 2023.

WENDLING, Mike. QANON: o que é e de onde veio o grupo que participou da invasão ao congresso dos eua. o que é e de onde veio o grupo que participou da invasão ao Congresso dos EUA. 2021. Disponível em: https://www.bbc.com/portuguese/internacional-55577322. Acesso em: 17 set. 2023.

Published

2023-12-20

How to Cite

LAVEZZO, G. H.; DA CONCEIÇÃO, G. C. . TOPIC ANALYSIS ON SOCIAL NETWORKS USING NATURAL LANGUAGE PROCESSING (NLP). Revista Interface Tecnológica, [S. l.], v. 20, n. 2, p. 65–76, 2023. DOI: 10.31510/infa.v20i2.1750. Disponível em: https://revista.fatectq.edu.br/interfacetecnologica/article/view/1750. Acesso em: 3 jan. 2025.

Issue

Section

Tecnologia em Informática

Metrics

Views
  • Abstract 243
  • PDF (Português (Brasil)) 169
Métricas