EVALUATION OF AN ATTENTION BASED DIMENSIONAL EMOTION RECOGNITION
DOI:
https://doi.org/10.31510/infa.v19i2.1523Keywords:
valence, arousal, non-verbal feedback, convolutional neural networksAbstract
Non-verbal feedback and the recognition of facial expressions have been an area of much research in the last decades. Facial expressions are a concrete way to recognize emotions and "teaching" computers to detect correctly what each facial expression means and to which emotion it is attached. Thus, in the scope of image recognition, Convolutional Neural Networks (CNN), through their layering over image pixels, facilitate pattern discovery. Therefore, through the application a CNN with an attention mechanism, the objective of this paper is to decode the non-verbal expressions present in the used database and identify to which emotion it is linked. Through the analysis of the CCC (Correlation Coefficient of Concordance) and the Mean Squared Error (RMSE) for the valence and arousal dimensions, this paper shows that the method used brings results, but there is still room for improvement in machine learning.
Downloads
Metrics
References
AL TAWIL, R. Nonverbal Communication in Text-Based, Asynchronous Online Education. The International Review of Research in Open and Distributed Learning, v. 20, n. 1, 28 fev. 2019. DOI: https://doi.org/10.19173/irrodl.v20i1.3705
CRUZ, A. A. da. Uma abordagem para reconhecimento de emoção por expressão facial baseada em redes neurais de convolução. 2019. 120 f. Dissertação (Mestrado em Informática) – Universidade Federal do Amazonas, Manaus, 2019. Disponível em: <https://tede.ufam.edu.br/handle/tede/7320>. Acesso em: 04 abr. 2022.
EKMAN, P.; FRIESEN, W.V. Facial action coding system: a technique for the measurement of facial movement. Palo Alto, 1978. DOI: https://doi.org/10.1037/t27734-000
FREITAS-MAGALHÃES, A. O código de Ekman: o cérebro, a face e a emoção. Porto, Portugal: Editora Escrytos, 2018. 443 p.
GÉRON, A. Hands-on machine learning with scikit-learn and tensorflow: Concepts. Tools, and Techniques to build intelligent systems. Editora O’Reilly, 2017.
HAMOND, L.; HIMONIDES, E.; WELCH, G. A natureza do feedback no ensino e na aprendizagem de piano com o uso de tecnologia digital no ensino superior. Orfeu, Florianópolis, v. 6, n. 1, p. 01-31, 2021. DOI: https://doi.org/10.5965/2525530406012021e0011. Disponível em: <https://www.revistas.udesc.br/index.php/orfeu/article/view/19928>. Acesso em: 01 abr. 2022. DOI: https://doi.org/10.5965/2525530406012021e0011
HAYKIN, S. O. Neural networks: a comprehensive foundation. 2ª Edição. Editora Pearson Education, 1998. 842 p.
KATTENBORN, T. et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, v. 173, p. 24-49, 2021. DOI: https://doi.org/10.1016/j.isprsjprs.2020.12.010
LIU, C.; CALVO, R. A.; LIM, R. Improving medical students’ awareness of their non-verbal communication through automated non-verbal behavior feedback. Front. ICT, 2016. DOI: 10.3389/fict.2016.00011. Disponível em: <https://www.frontiersin.org/articles/10.3389/fict.2016.00011/full>. Acesso em: 01 abr. 2022.
MINAEE, S.; MINAEI, M.; ABDOLRASHIDI, A. Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network. Sensors (Basel). 2021. Disponível em: <https://paperswithcode.com/paper/deep-emotion-facial-expression-recognition>. Acesso em: 26 ago. 2022. DOI: https://doi.org/10.3390/s21093046
PAULISTA, G. da P. Incorporando meta learning: o papel crítico da expressão não-verbal na interação face a face e na performance de equipes de trabalho. 2009. Tese (Doutorado em Engenharia e Gestão do Conhecimento) – Universidade Federal de Santa Catarina, Florianópolis, 2009. Disponível em: <https://repositorio.ufsc.br/handle/123456789/103237>. Acesso em: 07 mar. 2022.
PEDRO, T. M. J. Alexitimia e avaliação da valência e arousal de expressões emocionais. 2013. Dissertação (Mestrado em Psicologia Clínica e da Saúde) – Universidade de Aveiro, 2013. Disponível em: < http://hdl.handle.net/10773/12764>. Acesso em: 04 abr. 2022.
RUSSEL, S.; NORVIG, P. Artificial Intelligence: a modern approach. 4ª Edição. Editora Pearson Education, 2021. 1115 p.
SKANSI, S. Introduction to Deep Learning: from logical calculus to artificial intelligence. Editora Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-73004-2
SIQUEIRA, H.; MAGG, S.; WERMTER, S. (2020). Efficient Facial Feature Learning with Wide Ensemble-Based Convolutional Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence. Disponível em: <https://paperswithcode.com/paper/frame-attention-networks-for-facial>. Acesso em: 28 ago. 2022. DOI: https://doi.org/10.1609/aaai.v34i04.6037
YU, et al. Customized expression recognition for performance-driven cutout character animation. Applications of Computer Vision (WACV), 2016, IEEE Winter Conference on, p. 1–9. DOI: https://doi.org/10.1109/WACV.2016.7477449
WEN, Z. et al. Distract Your Attention: Multi-head Cross Attention Network for Facial Expression Recognition. Disponível em: <https://arxiv.org/pdf/2109.07270v4.pdf>. Acesso em: 28 set. 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Interface Tecnológica
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados pertencem à revista Interface Tecnológica e seguem o padrão Creative Commons (CC BY 4.0), que permite o remixe, adaptação e criação de obras derivadas do original, mesmo para fins comerciais. As novas obras devem conter menção ao(s) autor(es) nos créditos.
- Abstract 132
- PDF (Português (Brasil)) 108