CHURN RATE
how to reduce in telecommunications companies using machine learning
DOI:
https://doi.org/10.31510/infa.v18i2.1183Keywords:
churn rate, customers, dataAbstract
Churn rate corresponds to the cancellation fee related to the use of products/services offered by companies. Telecommunications companies, for example, tend to have high churn rate values due to the high competition in the sector. Therefore, it is essential that companies are able to predict when and why a customer will stop using their services, so that actions can be taken to avoid or at least minimize churn. The premise of this work is to create and compare churn rate predictability models from data from a telecommunications company in order to provide it with information for making more assertive decisions in actions that minimize customer cancellations. Data from a telecommunications operator with a large customer base were used. The database was treated to implement and carry out experiments with machine learning algorithms and data mining techniques. Finally, seven hypotheses were tested which showed that: (H1) the highest turnover rate is in female clients; (H2) old customers tend to have higher turnover; (H3) monthly fees for those who have video streaming are higher; (H4) costs tend to decrease as subscription time passes; (H5) clients who do not have dependents tend to churn more than clients who have dependents; (H6) customers who do not have technical support are more likely to churn; and (H7) customers who have the online backup service tend to churn less.
Downloads
Metrics
References
Batista, G. (2003). Pré-processamento de dados em aprendizado de máquina supervisionado. In: Tese (Doutorado) – Curso de Instituto de Ciências Matemáticas e de Computação, São Carlos.
Braga, A. P. et al. Redes neurais artificiais: teoria e aplicações. Rio de Janeiro: LTC, 2000. 250p.
Fonseca, J. (2002). Metodologia da pesquisa científica. Fortaleza: UECE.
Gil, A. (2016). Como elaborar projetos de pesquisa. 4. ed. – São Paulo: Atlas.
Gomes, P. (2019). Conheça as etapas do pré-processamento de dados. Datageeks: https://www.datageeks.com.br/pre-processamento-de-dados/, abril.
Han, J., Kamber, M. (2006). Data Mining: Concepts and Techniques. 2. ed. – São Francisco: Elsevier.
Honda, H., Facure, M., Yaoha, P. (2017). Os três tipos de aprendizagem de máquina. https://lamfo-unb.github.io/2017/07/27/tres-tipos-am/, abril.
Monard, M., Baranauskas, J. (2003). Sistemas Inteligentes Fundamentos e Aplicação. 1. ed. – Barueri: Manole Ltda.
Murteira, B. (1993). Análise Exploratória de Dados: estatística descritiva. McGraw Hill.
Porto, F., Ziviani, (2014) “Seminário de Grandes Desafios da Computação no Brasil” – Rio de Janeiro.
Radosavljevik, D., Putten, P. Van Der, & Larsen, K. (2010). The Impact of Experimental Setup in Prepaid Churn Prediction for Mobile Telecommunications: What to Predict, for Whom and Does the Customer Experience. Trans. MLDM, 3(2), 80–99.
Reis, E. (1997). Estatística multivariada aplicada. Lisboa.
Rossi, R. (2015). Classificação automática de textos por meio de aprendizado de máquina baseado em redes. In: Tese (Doutorado) – Universidade de São Paulo, São Carlos.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Interface Tecnológica
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados pertencem à revista Interface Tecnológica e seguem o padrão Creative Commons (CC BY 4.0), que permite o remixe, adaptação e criação de obras derivadas do original, mesmo para fins comerciais. As novas obras devem conter menção ao(s) autor(es) nos créditos.
- Abstract 479
- PDF (Português (Brasil)) 389