Runge-Kutta method and neural networks for numerical approximation of ordinary differential equations

Authors

DOI:

https://doi.org/10.31510/infa.v21i1.1965

Keywords:

Machine learning, Neural networks, Initial value problem, Approximations

Abstract

In this work, we present an approach that combines traditional numerical methods for solving differential equations with machine learning techniques, aiming to obtain more efficient approximations of solutions to ordinary differential equations (ODEs). In particular, we propose integrating the Runge-Kutta method to solve initial value problems with neural networks. The Runge-Kutta method is initially employed to generate approximations of the solution in a neighborhood of the initial point. Subsequently, we train a neural network using these points as input data. The results obtained demonstrate that the resulting model performs comparably to the neural network trained solely with points from the real solution. In the comparison with the Runge-Kutta method over the entire interval, using the same number of points, the model performed better. However, we observed that the neural network architecture implemented in the modeling process was not able to outperform the Runge-Kutta method over the entire interval, when we use the same step length for obtaining the points. This result suggests the need for further investigations in the design of the neural network architecture to improve its generalization capability in ODE problems. 

Downloads

Download data is not yet available.

References

BOYCE, W. E. Equações diferenciais elementares e problemas de valores de contorno. Grupo GEN, 2020.

BURDEN, R. L.; FAIRES, D. J.; BURDEN, A. M. Numerical analysis. Cengage learning, 2015.

BUTCHER, J. C. Numerical methods for ordinary differential equations. John Wiley & Sons, 2016. DOI: https://doi.org/10.1002/9781119121534

CHEN, R.T.Q. et al. Neural ordinary differential equations. Advances in neural information processing systems, v.31, 2018.

HIDA, C.S.; HIDA, G.S. Método de Euler e redes neurais para aproximação numérica de equações diferenciais ordinárias. Interface Tecnológica, v.20, n.12, Dez.2023. DOI: https://doi.org/10.31510/infa.v20i2.1726

MALIK, H. et al. Applications of artificial intelligence techniques in engineering. Sigma 2018, v.2, 2019. DOI: https://doi.org/10.1007/978-981-13-1819-1

MALL, S.; CHAKRAVERTY, S. Application of Legendre Neural network for solving ordinary differential equations. Aplied Soft Computing, v43, June.2016. DOI: https://doi.org/10.1016/j.asoc.2015.10.069

SANTOS, M.K. et al. Inteligência artificial, aprendizado de máquina, diagnóstico auxiliado por computador e radiômica: avanços da imagem rumo à medicina de precisão. Radiologia brasileira, v.52, Dez. 2019. DOI: https://doi.org/10.1590/0100-3984.2019.0049

SOTOMAYOR, J. Lições de equações diferenciais ordinárias. IMPA, 1979.

VIANA, M.; ESPINAR, J. Equações Diferenciais: Uma abordagem de Sistemas Dinâmicos, IMPA. 2021.

Published

2025-01-28

Issue

Section

Tecnologia em Informática

How to Cite

SUSSUMU HIDA, Gilberto; HIDA, Clayton Suguio. Runge-Kutta method and neural networks for numerical approximation of ordinary differential equations . Revista Interface Tecnológica, Taquaritinga, SP, v. 21, n. 1, p. 257–267, 2025. DOI: 10.31510/infa.v21i1.1965. Disponível em: https://revista.fatectq.edu.br/interfacetecnologica/article/view/1965. Acesso em: 20 jul. 2025.