ALGORITHMS AGAINST THE FURY OF NATURE
The Role of Artificial Intelligence in Combating Natural Disasters
DOI:
https://doi.org/10.31510/infa.v22i1.2204Keywords:
Keywords: Artificial Intelligence. Natural Disasters. Prevention. Machine Learning. Predictive Systems.Abstract
This article aims to analyze the role of Artificial Intelligence (AI) in the prevention and mitigation of natural disasters such as landslides, earthquakes, and tsunamis. The increasing frequency and intensity of such events have driven the search for technological solutions that enable faster and more effective responses. The methodology adopted was a systematic literature review of recent national and international studies addressing practical applications of machine learning algorithms, neural networks, and predictive systems in environmental risk contexts. The results show that AI has proven to be a valuable ally in monitoring risk areas, forecasting events based on historical and real-time data, and supporting automated decision-making in emergency situations. Furthermore, although there are challenges related to data collection, system integration, and technological accessibility, current advances already allow the implementation of high-accuracy models with the potential to save lives. It is concluded that the use of Artificial Intelligence represents a significant evolution in natural risk management, contributing to the reduction of social, economic, and environmental impacts caused by disasters.
Downloads
References
BASTOS, T. C.; BASTOS, C. A. C. Inteligência Artificial e desastres naturais: uma análise da prevenção e mitigação de riscos. São Paulo: Atlas, 2021.
BRITO, M. P. de. Aplicações de machine learning em desastres naturais: estudo de caso no Brasil. Dissertação (Mestrado) – Universidade Federal do Rio de Janeiro, Instituto de Geociências, 2020.
CHAKRABORTY, S. et al. Application of Artificial Intelligence in Flood Forecasting in India. Journal of Environmental Management, v. 260, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0301479720301552. Acesso em: 05 abr. 2025.
GOMES, L. G. F. F. Novela e sociedade no Brasil. Niterói: EdUFF, 1998.
KUMAR, A.; TRIPATHI, S. Integration of AI with GIS for Disaster Management in Urban India. Procedia Computer Science, v. 167, p. 1994–2003, 2020.
KUMAR, S. et al. AI-based earthquake prediction model for Japan: a deep learning approach. Seismological Research Letters, v. 92, n. 2A, p. 612–619, 2021. Disponível em: https://pubs.geoscienceworld.org/ssa/srl/article/92/2A/612/595643. Acesso em: 05 abr. 2025.
MACHADO, D. R.; PEREIRA, J. R. Inteligência Artificial e Desastres Naturais: Cenários e Perspectivas. Belo Horizonte: UFMG, 2022.
MIZUNO, K. Smart disaster management in Japan using AI and Big Data. In: Proceedings of the International Conference on Disaster Risk Reduction and AI Technologies, Tóquio, 2021.
OLIVEIRA, M. C. de; SOUZA, P. R. Sistemas inteligentes e políticas públicas para a redução de desastres no Brasil. Revista Brasileira de Gestão Ambiental, v. 13, n. 2, p. 113–127, 2022.
SILVA, L. M.; NASCIMENTO, F. A. Desastres naturais e tecnologias emergentes: uma abordagem comparativa. Rio de Janeiro: FGV Editora, 2023.
BRASIL. Ministério da Ciência, Tecnologia e Inovações. Plano Nacional de Internet das Coisas: Caderno Setorial – Cidades Inteligentes. Brasília: MCTI, 2019. Disponível em: https://www.gov.br/mcti/pt-br/assuntos/inovacao/internet-das-coisas/publicacoes. Acesso em: 05 abr. 2025.
WORLD BANK. Artificial Intelligence in Disaster Response: Applications and Challenges. Washington, DC: World Bank Group, 2020. Disponível em: https://openknowledge.worldbank.org/handle/10986/34479. Acesso em: 05 abr. 2025.
GOVERNO DO JAPÃO. Japan Meteorological Agency (JMA). Earthquake Early Warning (EEW). Tóquio: JMA, 2024. Disponível em: https://www.jma.go.jp/jma/en/Activities/eew.html. Acesso em: 05 abr. 2025.
GOVERNO DA ÍNDIA. Ministry of Earth Sciences. Artificial Intelligence Strategy for Disaster Risk Reduction. Nova Deli: MoES, 2023. Disponível em: https://moes.gov.in. Acesso em: 05 abr. 2025.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Revista Interface Tecnológica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados pertencem à revista Interface Tecnológica e seguem o padrão Creative Commons (CC BY 4.0), que permite o remixe, adaptação e criação de obras derivadas do original, mesmo para fins comerciais. As novas obras devem conter menção ao(s) autor(es) nos créditos.


.jpg)


1.png)
1.png)