APPLICATION OF DEEP LEARNING IN SUSTAINABLE AGRICULTURE
Agricultural Practices in the Brazilian Context
DOI:
https://doi.org/10.31510/infa.v21i2.2030Keywords:
artificial intelligence, input optimization, neural networks, SDGs, sustainabilityAbstract
This article addresses the application of Deep Learning, a branch of artificial intelligence that uses deep neural networks to analyze large datasets and identify complex patterns, in promoting sustainable agriculture. It analyzes its contributions and challenges in the Brazilian context. The main objective is to demonstrate how this technology can optimize agricultural practices, such as crop forecasting, pest and disease detection, and efficient resource management, aligning with the United Nations Sustainable Development Goals (SDGs) 2 and 13. The methodology used consists of qualitative research, analyzing data and information available in academic articles, books, news, and institutional web portals. The results indicate that Deep Learning can increase the accuracy of agricultural forecasts, reduce pesticide use, and optimize the use of water and fertilizers, promoting more efficient and sustainable practices. It is concluded that the adoption of Deep Learning in Brazilian agriculture can be an effective tool to achieve environmental and social goals, encouraging innovation and sustainability. However, challenges related to technological infrastructure and data quality must be addressed to maximize the benefits of this technology.
Downloads
References
AGROADVANCE. Machine learning e deep learning na agricultura. Agroadvance, 2024. Disponível em: https://agroadvance.com.br/blog-machine-learning-deep-learning-agricultura/. Acesso em: 10 set. 2024.
BRASIL ESCOLA. Agricultura sustentável: homem e meio ambiente. Brasil Escola, 2024. Disponível em: https://brasilescola.uol.com.br/geografia/agricultura-sustentavel-homem-meio-ambiente.htm. Acesso em: 16 set. 2024.
COOPATOS. Deep learning na agricultura. Coopatos, 2024. Disponível em: https://coopatos.com.br/noticias/120-deep-learning-na-agricultura. Acesso em: 17 set. 2024.
EMBRAPA. O que são os ODS. Embrapa, 2024. Disponível em: https://www.embrapa.br/objetivos-de-desenvolvimento-sustentavel-ods/o-que-sao-os-ods. Acesso em: 15 set. 2024.
GIL, A. C. Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas, 2008.
GOOGLE CLOUD. What is artificial intelligence? Google Cloud, 2024. Disponível em: https://cloud.google.com/learn/what-is-artificial-intelligence?hl=pt-BR. Acesso em: 15 set. 2024.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. MIT Press, 2016. Disponível em: https://books.google.com/books?hl=pt-BR&lr=&id=b06qDwAAQBAJ&oi=fnd&pg=PP9&dq=O+que+é+deep+learning&ots=_pBYVQlS0L&sig=2r0YkGEAwv4FqNaANYbrhY9Xzys#v=onepage&q=O que é deep learning&f=false. Acesso em: 13 set. 2024.
IBM. O que é deep learning? IBM, 2024. Disponível em: https://www.ibm.com/br-pt/topics/deep-learning. Acesso em: 14 set. 2024.
IBM. O que é inteligência artificial? IBM, 2024. Disponível em: https://www.ibm.com/br-pt/topics/artificial-intelligence. Acesso em: 12 set. 2024.
JOHNSON, M.; LEE, S. Agricultural sustainability in the age of deep learning: Current trends, challenges, and future trajectories. ResearchGate, 2024. Disponível em: https://www.researchgate.net/publication/374940553_Agricultural_Sustainability_in_the_Age_of_Deep_Learning_Current_Trends_Challenges_and_Future_Trajectories. Acesso em: 17 set. 2024.
LI, H.; ZHOU, G.; WANG, Y. Applications of deep learning in sustainable agriculture. Sustainability, v. 14, n. 11, p. 6668, 2024. Disponível em: https://www.mdpi.com/2071-1050/14/11/6668. Acesso em: 11 set. 2024.
MARCONI, M. A.; LAKATOS, E. M. Fundamentos de metodologia científica. 7. ed. São Paulo: Atlas, 2017.
NG, A. Multimodal deep learning. Stanford University, 2011. Disponível em: https://ai.stanford.edu/~ang/papers/icml11-MultimodalDeepLearning.pdf. Acesso em: 12 set. 2024.
ORACLE. What is deep learning? Oracle, 2024. Disponível em: https://www.oracle.com/br/artificial-intelligence/machine-learning/what-is-deep-learning/. Acesso em: 15 set. 2024.
RAÍZEN. Agricultura sustentável. Raízen, 2024. Disponível em: https://www.raizen.com.br/blog/agricultura-sustentavel. Acesso em: 16 set. 2024.
RED HAT. What is deep learning? Red Hat, 2024. Disponível em: https://www.redhat.com/pt-br/topics/ai/what-is-deep-learning. Acesso em: 14 set. 2024.
RUSSELL, S.; NORVIG, P. Artificial intelligence: A modern approach. Pearson, 2020. Disponível em: https://books.google.com/books?hl=pt-BR&lr=&id=oDSZDwAAQBAJ&oi=fnd&pg=PT5&dq=O+que+é+Inteligência+Artificial&ots=5HhyLdUtQV&sig=QflD5glsACNXF0owqVNfgv2OGZo#v=onepage&q=O que é Inteligência Artificial&f=false. Acesso em: 11 set. 2024.
SEJNOWSKI, T. The deep learning revolution. MIT Press, 2018. Disponível em: https://books.google.com/books?hl=pt-BR&lr=&id=9xZxDwAAQBAJ&oi=fnd&pg=PR7&dq=Terrence+Sejnowski+what+is+deep+learning&ots=SIMfS9pzUg&sig=wX3tTWGNTou_D32l1KIDBmmaGLU#v=onepage&q&f=false. Acesso em: 15 set. 2024.
SILVA, R. A. Detecção de linhas de plantio utilizando deep learning. Universidade Federal de Uberlândia, 2024. Disponível em: https://repositorio.ufu.br/bitstream/123456789/39346/1/Deteccao_linhas_plantio.pdf. Acesso em: 14 set. 2024.
SMITH, J.; BROWN, L. Deep learning in precision agriculture. Agricultural Systems, v. 202, p. 103-115, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1574954123002467. Acesso em: 17 set. 2024.
SYNGENTA. Syngenta Crop Protection e Insilico Medicine usam inteligência artificial para agricultura sustentável. Syngenta, 2024. Disponível em: https://www.syngenta.pt/news/corporativo/syngenta-crop-protection-e-insilico-medicine-usam-inteligencia-artificial-para. Acesso em: 9 set. 2024.
TERRA. O que é agricultura sustentável: vantagens e desvantagens. Terra, 2024. Disponível em: https://www.terra.com.br/planeta/o-que-e-agricultura-sustentavel-vantagens-e-desvantagens,2a582a98730e9c9d7160d92572098bb4v45boh8l.html. Acesso em: 11 set. 2024.
UCLA. Deep learning applications. UCLA, 2012. Disponível em: https://helper.ipam.ucla.edu/publications/gss2012/gss2012_10596.pdf. Acesso em: 10 set. 2024.
UFMG. Os Objetivos de Desenvolvimento Sustentável. UFMG, 2024. Disponível em: https://www.ufmg.br/espacodoconhecimento/os-objetivos-de-desenvolvimento-sustentavel/. Acesso em: 13 set. 2024.
ZHANG, X.; WANG, Y.; LI, J. Deep learning for sustainable agriculture. Sustainable Agriculture, v. 2, n. 1, p. 123-135, 2024. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/sae2.12036. Acesso em: 14 set. 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Revista Interface Tecnológica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados pertencem à revista Interface Tecnológica e seguem o padrão Creative Commons (CC BY 4.0), que permite o remixe, adaptação e criação de obras derivadas do original, mesmo para fins comerciais. As novas obras devem conter menção ao(s) autor(es) nos créditos.


.jpg)


1.png)
1.png)