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RESUMO 

Procedimentos teóricos e experimentais para projetar uma linha formadora de pulsos vêm 

sendo desenvolvidos para operar válvulas magnetrons de potência. O projeto teórico de uma 

linha formadora de pulsos é baseado na síntese teórica da rede de Guillemin. As redes obtidas 

neste trabalho utilizaram simulação numérica com fonte de 9kV, pulsos com largura de 0,7µs 

com frequência recorrente (PRF) de 2kHz e impedância de 31Ω. Um aparato experimental foi 

construído para verificar o desempenho da PFN e os resultados obtidos são discutidos e 

apresentados neste trabalho. 
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ABSTRACT 

Theoretical and experimental procedures to design a pulse-forming network (PFN) have been 

developed in order to drive a high power magnetron. The theoretical pulse-forming network 

design approach is based on the Guillemin network synthesis theory. The networks obtained 

using this approach were numerically simulated to supply 9kV and 0.7 µs pulses at 2kHz of 

pulse recurrence frequency (PRF) to 31 impedance level. An experimental setup was 

assembled to verify the performance of a PFN and the obtained results of the experiment are 

shown and discussed in this work. 
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INTRODUCTION 

Pulsed microwave magnetrons require the use of pulse generators that are capable of producing a 

train of pulses of very sharp and short duration. The most important parameters of pulse 

generators are pulse width, pulse power, average power, pulse recurrence frequency (PRF), duty 

ratio, and impedance level. The pulse generators can be also divided in two types: those in which 

only a small fraction of the stored electric energy is discharged into the load during a pulse, called 

“hard-tube pulsers”, and those in which all of the stored energy is discharged during each pulse, 

called “line-type pulsers”. In this last, the energy-storage device is essentially a lumped-constant 

transmission line. Since this component of the line-type pulser serves not only as source of the 

electric energy during the pulse, but also as the pulse-shaping element, it became commonly 

known as pulse-forming network (PFN). (GLASOE; LEBASCQZ, 1948). The PFN in a line-type 

pulser consists of a set of inductors and capacitors which may be put together in any one of a 

number of possible configurations. The configuration chosen for a particular purpose depends on 

the ease which the network can be fabricated, as well as, on the specific pulser characteristic 

desired. The theoretical basis for calculate the values of the inductance and capacitance elements 

of various networks are given in this paper. (GLASOE; LEBASCQZ, 1948; GUILLEMIN, 1953). 

In this work, it is reported some results of PFN performance that has been developed to be used in 

a driving magnetron circuit. The PFN features are: 31 of impedance level, 2kHz of PRF, 0.7s 

of pulse duration, and 11.4 nF of total energy-storage capacitance.  
___________________________________________________________________________ 
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I. THEORY FUNDAMENTATION   

 

The technique used by Guillemin´s theory on design of the PFN is based on the Fourier series 

expansion of the desired output pulse. The trigonometric Fourier series for the rectangular 

pulses, suitable to drive a magnetron contains only odd terms, and it may be found by:  
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where i(t) is the electric current pulse, v represent the terms odd of the series,  is the pulse 

duration and bv are the  coefficients which determine the amplitude of the pulse. Each term of 

the Fourier series at (1) consists of a sinuidal wave at each section of the PFN, and the electric 

current pulse can also be written as: 
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where, VN, Lv, and Cv denote the PFN voltage, the inductance and the capacitance, 

respectively. These parameters may be determined by:  
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The resulting network is shown in Fig. 1, known as the type-C Guillemin network, and consists of 

a series of resonant LC elements connected in parallel. (GLASOE; LEBASCQZ, 1948). 
 

 

 

 

 

 
Figure 1 – PFN type-C derived by Fourier-series analysis. 

Source: GUILLEMIN (1953) and GLASOE; LEBASCQZ (1948). 
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For a four section network type-C, the function impedance ZC(s) can be written as: 
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where ai and bj are the polynomials coefficients. The PFN type-C is inconvenient for practical 

use, because the inductances have appreciable distributed capacitance and capacitors have a 

wide range of values which makes the manufacture difficult and expensive. Therefore, it is 

desirable to devise equivalent networks that have different ranges of values for capacitance 

and inductance. For instance, using the Foster’s theorem, the admittance function for network 

of Fig. 1 may be written, by inspection, by means of:  
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The function Z(s) may then be expanded in partial fractions about its poles, and an expression 

of the following form is obtained as: 
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For a four section network, Z(s) can be written as: 
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where Kn are the residues of ZA(s), n are the resonance frequencies, and A0 is a constant. 

Equation (9) represents the impedance function for the network of Fig. 2.  

 

 

 

 

 

 

 
Figure 2 – PFN type-A derived by Foster’s theorem. 

Source: GUILLEMIN (1953) and GLASOE; LEBASCQZ (1948). 

. 

 

Thus, C0 is equal to the sum of the Cv’s shown Fig. 1, and L2n is equal to inductance of all the 

Lv’s in parallel. One additional form of physically realizable network may be found making 

continued-fraction expansion of the reactance or admittance functions and identifying the 

coefficients thus obtained with network elements. This procedure is known as Cauer’s 

theorem and represents a ladder network (10), resulting in the type-B Guillemin network, 

shown in Fig. 3. This PFN correspond the transmission-line equivalent. (GLASOE; 

LEBASCQZ, 1948). The (10) means a series arms expressed as impedances and the shunt 

arms as admittances. (MUSOLINO; RAUGI; BERNARDO, 1997; KUO, 1966). 
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Figure 3 – PFN type-B derived by Cauer’s theorem. 
Source: GUILLEMIN (1953) and GLASOE; LEBASCQZ (1948). 
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The essential PFN obtained by canonical network forms is the type-D of the Guillemin shown 

in Fig. 4, which has equal capacitances. In term of the manufacture, it is desirable because the 

capacitors for high voltage networks are difficult item to manufacture. The negative inductances 

are due to compensate the modified values of the capacitances of the PFN type-C. 

 

 

 

 

 
 

Figure 4 – PFN type-D having equal capacitances and negative inductances. 
Source: GUILLEMIN (1953) and GLASOE; LEBASCQZ (1948). 

 

The negative inductances, Fig. 4, can be realized physically by use of the mutual inductance 

concept (Fig. 5) known as network type-E of the Guillemin. This PFN is pratical because all 

the inductances may be provided by single winding coil, and the capacitors may be tapped in 

at proper points. To find the values of inductances the PFN type-E, it is used the procedure 

below. (GLASOE; LEBASCQZ, 1948). For instance, for a PFN type-E of the four sections: 
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where LE1, LE2, LE3 and LE4 are inductances of the type-E. 

 

 

 

 

 

 

 
 

Figure 5 – PFN type-E having equal capacitances and mutual-inductances. 
Source: GUILLEMIN (1953) and GLASOE; LEBASCQZ (1948). 

 
 

II. MATERIALS AND METHODS 
 

In order to investigate the characteristics of the PFN voltage-fed, a computer code to simulate the 

behavoir of the circuits shown in Figs. 1 to 5 was developed. The circuit analysis was carried out 

using the state variables approach. So, the state equations for the type-A, B, C, D and E PFNs, 

written using the inductor currents and the capacitor voltages as state vector elements. The system 

was integrated using a fourth order Runge-Kutta algorithm and the computer code was written in 

Turbo Pascal 1.5 programming language. (PRESS et al. 1990; CARNAHAN; LUTHER; 

WILKES, 1972; DESOER; KUH, 1985). The output of 0.7µs and 11.4 nF PFN was connected 

to a 31Ω resistive load RL and the output pulse waveforms was obtained for a charging voltage of 

9kV input. The output pulses obtained by simulation of four sections LC of PFN type-A and B 

with a resistive load RL are shown in Figs. 6 and 7, respectively.  
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III. RESULTS AND DISCUSSION 
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The results show that networks designed to simulate a lossless transmission line have some 

limitations. This is evident by overshoots near of the beginning of the pulse and the 

oscillations during the pulse. This effect is due the first four odd terms of a rectangular pulse 

Fouries series in the synthesis procedure. In order to verify the accuracy of the PFN 

simulated, an experimental set-up shown in Fig. 8 was assembled. The output waveforms, 

voltage and currents pulses, in a 31  matched load in Fig. 9. These conditions are relevant to 

magnetron modulator design. The waveforms were recorded using an oscilloscope Tektronix 

TDS-210 connected to a computer. 
 

  
 

 

 

 

 

Figure 9 shows a good agreement between the theoretical and experimental results and the 

matching impedance can be observed between the PFN type-E and the resistive load.  
 

CONCLUSIONS 
 

In this work the performance of five types of PFNs were simulated and investigated. The 

theoretical investigation was conducted using the Guillemin synthesis network theory and the 

state variable approach. The resulting equation differential system was integrated using a fourth 

order Runge-Kutta algorithms. A test circuit modulator based on the theoretical of PFNs was 

assembled and the results shown that it are suitable to driving high power magnetron. The 

networks obtained using this approach were numerically simulated to supply 9kV and 0.7 µs 

pulses at 2kHz of pulse recurrence frequency (PRF) to 31 impedance level. 

Figure 6 – Waveform pulse output of the 

type-A network with four-sections LC. 

Source: Developed by author (2012). 

Figure 7 – Waveform pulse output of the 

type-B network with four-sections LC. 

Source: Developed by author (2012). 

 

Figure 9 – The output waveforms, voltage and 

current pulses, in a 31  matched load. 
Source: Developed by author (2012). 

 

Figure 8 – Experimental assembling used 

for PFN performance measurements. 
Source: Developed by author (2012). 
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