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PRINCIPAL COMPONENT ANALYSIS WITH NEURALNETWORK AND
DNA SEQUENCE ANALYSIS

Marcus Rogério de OLIVEIRA®

ABSTRACT

The Artificial Neural Networks are versatile tools for a number of applications. With their many configurations
of parameters and architectures, Artificial Neural Networks are used in Bioinformatics and other areas. This
work presents an Artificial Neural Network that implements Principal Component Analysis (PCA) and performs
DNA sequence analyses.

KEYWORDS: Artificial Neural Networks. Principal Component Analysis. Hebbian Neural Network Neuron.
INTRODUCTION

Nucleic acid and protein sequences contain information of interest to molecular biologists since the genome
forms the blueprint of an organism (Cathy, 2000). As the molecular data continues to grow exponentially,
computacional tools and techniques are needed to identify the features, functions and structure of genes.

Artificial Neural Networks are versatile tools for a number of applications. With their many features and
capabilities for recognition, generalizations and classification, Artificial Neural Networks are used in
Bioinformatics and other areas. Recently, Neural Networks have been used for statistical techniques that can
be used in Genome studies (Oja, 1991). Principal Component Analysis (PCA) is one of them. In the field of
data analysis, it is important to reduce the dimensionality of data, because it will extract knowledge from the
data. As amethod of dimensionality reduction, PCA has been applied in various areas, such as data compression
and pattern recognition (Hotelling, 1993).

The neuron model for PCA consists of a neuron derived from the original formulation of the Hebbian Neural
Network Neuron. This model leads to a behaviour where the unit is able to extract from its inputs the statistically
most significant factor. In fact, in PCA, n dimensional redundant data vectors, which are correlated to each
other, are transformed inte certain s dimensional data vectors (s < i) orthogonal to each other. These
vectors give the principal directions along which the data can cloud mostly stretched. The principal components
are the projection of the data set on eigenvectors of principal directions. The first principal components
ranked with their eigenvalues in descending order explain the most variance of the data set and the last
explains the least.

Principal Component Neural Networks (PCNN ) are mainly used for classification and feature extraction.
Because the PCA makes classification by extracting the most important information for classification and
removing the correlation between the attributes, it will be used for Nucleid Acid Sequence comparison and
analvsis.
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Nucleic Acid Sequence Analysis
Proteins

A protein is typically built of a series of basic blocks called amino acids, chained together in a linear sequence
of blocks. Amino acids may come in a variety of shapes and properties: they may be small or bulky, hidrophobic
or hidrophyllic, electrically charged or neutral, etc. hence allowing for very complex shapes and interactions to
be produced.

Bovine ribonuclease N Human ribonuclease

Figure 1. Proteins Structures

Amino acids are commonly referred to by name or by an abbreviation, usually in three or one letter. This
allows for more efficient descriptions of how they are chained together to build a protein:

Table 1. Amino Acids

Neutral-Nonpolar § 3-lctter |1 -letter
Glycine Gly G
L-Alanine Ala A
L-Valine Val b
L-Isoleucine Ile T
L-Leucine Leu I
L-Phenylalanine §Phe F
L-Proline Pro P
L-Methionine Met M
Neutral-Polar

L-Serine Ser S
L-Thrconine Thr a5
L-Tyrosine Tyr Y
L-Tryptophan Trp W
L-Asparagine Asn N
L-Glutamine Gln Q
L-Cysteine Cys C
Acidic

L-Aspartic AspD D
L-Glutamic Glu E
Basic

L-Lysine Lys 1L
L-Arginine Arg IR
IL-Histidine His I

54



INTERFACE TECNOLOGICA - v.2- n.1 - 2005

Nucleic Acids

For Nucleic Acids, the number of basic building blocks is a lot smaller, each nucleic acid chain being composed
of series of only four possible different nucleotides which furthermore provide for a very limited set of interactions.

Nucleic acids come in two types: DNA (DeoxyriboNucleic Acid) and RNA (RiboNucleic Acid). Both of
them consist of a series of nucleotides that are glued one after the other to constitute the sequence of blocks
that make up the functional chain.

Nucleotides are composed of a phosphate group, a sugar (ribose in RNA, and deoxyribose in DNA) and a
base which marks the specific difference among nucieotides. The base may be one of guanine, cytosine,
adenine and thymine in the case of DNA or guanine, cytosine, adenine or uracil for RNA. They can be
referred to by their one letter abbreviations G C, A, T and U. Interactions are mainly driven by the stablishment
of hydrogen bonds, which can only be established among thymine (or uracil) and adenine (two hydrogen
bonds) and cytosine and guanine (three hydrogen bonds).

Adenine

Guanine

Cytosine

DNA
Backbone s

Figure 2. Helix Structure of DNA
The main role of nucleic acids is to convey all the genetic information needed to make proteins and control the
building process. Protein sequences are coded by nucleic acids using groups three of nucleotides that code

for a given amino acid: the code is more or less universal with little exceptions, and includes redundancy to
increase the fidelity of the reading process when making duplicates or translating the information:
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Table 2. A combination of 3 Nucleic Acids corresponds to 1 Amino Acid

[UUUPhe JUCUSer[lUAUTyr JUGUJCys

[UUCIPhe JUCC]SerfUACITYyr JUGC|Cys

UUA]Leu JUCAlSerJUAAIStoplUGA[Stop
UUG]Leu JUCG]Ser [UAG|StoplUGG|Trp

ICUUJLeu [CCUProl]CAUJHis JCGUJArg

[CUC]Leu JcCClPro|CACHIs JCGClArg
ICUAJLeu JCCAJPro]J]CAAIGIn JCGAJArg
ICUG]Leu JCCGPro]CAG|GIn ICGGlAre
AUUNle [ACUJThdAAUJAsn JAGU[Ser
AUCHIe JACCIThrfAAClAsn JAGClSer
AUAlle IACAIThriAAA]Lys JAGAJATg |
AUGIMet JACGIThriAAGILys IAGGJArg |
IGUU}Val [GCUJAlajGAUJAsp IGGUGly
IGUC}val [GCCJAlalGAC]Asp [GGCIGly
IGUAIVal IGCAJA1alGA AlGIu JGGA]GIy
IGUGIVal* [GCGJAIA|GAGIGIu JGGG]Gly

Sequence Comparison

An alignment is an arrangement of two sequences, which shows where the two sequences are similar, and
where they differ. An optimal alignment, of course, is one that exhibits the most similarities, and the least
differences. Broadly, there are three categories of methods for sequence comparison:

» Segment methods compare all overlapping segments of a predetermined length (e.g., 10 amino acids)
from one sequence to all segments from the other. This is the approach used in dotplots.

* Optimal global alignment methods allow the best overall score for the comparison of the two sequences
to be obtained, including a consideration of gaps. These programs align sequences over their whole length.

« Optimal local alignment algorithms seek to identify the best local similarities between two sequences also
including explicit consideration of gaps. Alignment may only be over a short span of sequence.

The basic idea behind the sequence alignment programs is to align the two sequences in such a way as to
produce the highest score - a scoring matrix is used to add points to the score for each match and subtract
them for each mismatch. The matrices commonly used for scoring protein alignments arc more complex than
the simple match/mismatch matrices used for DNA sequences such as the one we saw earlier; the scores that
form the protein matrices are designed to reflect similarity between the different amino acids rather than simply
scoring identities. Over time various mutations occur in sequences; the scoring matrices attempt to cope with
mutations, but insertions and deletions require some extra parameters to allow the introduction of gaps in the
alignment. There are penalties both for the creation of gaps and for the extension of existing ones; the default
gap parameters given in alignment programs have been found to be empirically correct with test sequences
but you should experiment with different gap penalties (Berg, 2002).
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Principal Component Analysis (PCA)

PCA is a way of identifying patterns in data, and expressing the data in such a way as to highlight their
similarities and differences. Since patterns in data can be hard to find in data of high dimension, where the
facility of graphical representation is not available, PCA is a powerful tool for analysing data.

Principal component analysis (PCA) involves a mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated variables called principal components (Dunteman,
1989). The first principal component accounts for as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining variability as possible. Traditionally, principal
component analysis is performed on a square symmetric matrix of type SSCP (pure sums of squares and
cross products), Covariance (scaled sums of squares and cross products), or Correlation (sums of squares
and cross products from standardized data). The analysis results for objects of type SSCP and Covariance
do not differ, since these objects only differ in a global scaling factor. A Correlation object has to be used if the
variances of individual variates differ much, or if the units of measurement of the individual variates differ.

The mathematical technique used in PCA is called eigen analysis: eigenvalues and eigenvectors of a square
symmetric matrix with sums of squares and cross products. The eigenvector associated with the largest
eigenvalue has the same direction as the first principal component. The eigenvector associated with the second
largest eigenvalue determines the direction of the second principal component. The sum of the eigenvalues
equals the trace of the square matrix and the maximum number of eigenvectors equals the number of rows (or
columns) of this matrix.

Mathematical foundations
Principal component analysis is based on the statistical representation of a random variable. Suppose a random
vector population x, where

X = (:’31, xey xn)T

and the mean of that population is denoted by
1x = E{x}

and the covariance matrix of the same data set is

C, = E{(x — u)(x ~ p1x)")

The components of Cs , denoted by {"'J, represent the covariances between the random variable

components ¢ and Zy . The component F4 is the variance of the component Z; . The variance of a
component indicates the spread of the component values around its mean value. If two components Z4
and ¥ of the data are uncorrelated, their covariance is zero {fj’ﬁ = Ly = [): .

The covariance matrix is, by definition, always symmetric.

Froma sample of vectors Xj, .. ., Xpg, PCA can calculate the sample mean and the sample covariance
matrix as the estimates of the mean and the covariance matrix.
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From a symmetric matrix such as the covariance matrix, PCA can calculate an orthogonal basis by finding its
eigenvalues and eigenvectors. The eigenvectors  &; and the corresponding eigenvalues A; are the

solutions of the equation

Ciei=ha =11

For simplicity it is assumed that the A; are distinct. These values can be found, for example, by finding the
solutions of the characteristic equation

IC, — XI| =0

where the ] is the identity matrix having the same order than  C,and the the |.| denotes the determinant
of the matrix. If the data vector has n components, the character.s..c equation becomes of order n. This is
easy to solve only if n is small. Solving eigenvalues and corresponding eigenvectors is a non-trivial task, and
many methods exist. One way to solve the eigenvalue problem is to use a neural solution to the problem (Oja,
1983). The data is fed as the input, and the network converges to the wanted solution. By ordering the
eigenvectors in the order of descending eigenvalues (largest first), one can create an ordered orthogonal basis
with the first eigenvector having the direction of fargest variance of the data. In this way, we can find directions
in which the data set has the most significant amounts of energy. Suppose one has a data set of which the
sample mean and the covariance matrix have been calculated. Let A be amatrix consisting of eigenvectors
of the covariance matrix as the row vectors.

By transforming a data vector x, we get

¥ = A(x = ﬂ'x]

which is a point in the orthogonal coordinate system defined by the eigenvectors. Components of ¥ can be
seen as the coordinates in the orthogonal base. It can reconstruct the original data vector x from ¥ by

X = ATy + fix

using the property of an orthogonal matrix A ™! = AT .The A7 isthe transpose of a matrix A.
The original vector X was projected on the coordinate axes defined by the orthogonal basis. The original
vector was then reconstructed by alinear combination of the orthogonal basis vectors. Instead of using all the
eigenvectors of the covariance matrix, we may represent the data in terms of only a few basis vectors of the
orthogonal basis. If it is denoted by the matrix having the K first eigenvectors as rows byA K, a similar

transformation can be created as seen above

Y = Ag(x — i)

and

x = A’y + fix
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This means that the original data vector can be projected on the coordinate axes having the dimension K and
transforming the vector back by a linear combination of the basis vectors. This minimizes the mean-square
error between the data and this representation with given number of eigenvectors. If the data is concentrated
in a linear subspace, this provides a way to compress data without losing much information and simplifying the
representation. By picking the eigenvectors having the largest eigenvalues we lose as little information as
possible in the mean-square sense. One can e.g. choose a fixed number of eigenvectors and their respective
eigenvalues and get a consistent representation, or abstraction of the data. This preserves a varying amount of
energy of the original data. Alternatively, we can choose approximately the same amount of energy and a
varying amount of eigenvectors and their respective eigenvalues. This would in turn give approximately consistent
amount of information in the expense of varying representations with regard to the dimension of the subspace
(Oja, 1983).

Neuron Model as a Principal Component Analyser

Itis well known (Diamantras, 1986) that a 3 layer (including the input and the output layers) neural network
model with linear transfer functions at the hidden layer has the rank reducing capability, where the specific
rank is effected by the number of units at the hidden layer. This is a network version of reduced-rank (RR)
regression (Anderson, 1993) which is also known as PCA of instrumental variables and redundancy analysis.
The usual PCA follows when inputs and outputs coincide in RR regression analysis. The network version of
PCA s not interesting in itself, because there are other more efficient and precise algorithms available (Takane,
1999). It becomes interesting when the model is extended to nonlinear PCA by including two additional
hidden layers with nonlinear transfer functions, one between the input layer and the middle layer and the other
between the middle layer and the output layer.

The neuron model considered here is as follow (Hotelling, 1993). The neuron receives a set of n scalar-

valued inputs: Eyy ..., &, chmeybeassumed to represent firing frequencies in presynaptic fibers;

in some models, the zero level 1s defined so that negative values for the effective inputs become possible)

through n synaptic junctions with coupling strngths gy, . . ., i, The unit sends out an efferent signal

n- According to many models of neuron networks, the input-output relationship is linearized to read
gye— Z Hidi T

=1

In most recent models, the junction strengths U; have been assumed variable in time according to some
version of the Hebbian hypothesis: the efficacies grow stronger when both the pre and postsynaptic signals
are strong. However, as the basic Hebbian scheme would lead to unrealistic growth of the efficacies, a
saturation or normalization has usually been assumed. This leads typically to the following type of learning
equation:

Hilt) + yn(C(1)

PES. .
i+ DS e futa) + BB

where 7 isapositive scalar.

The form of the denominator is due to the use of Euclidean vector norm. The sum of the squares of pi?)
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remains equal to one. This particular form of normalization is very convenient from a mathematical point of
view. The actual reason for a normalization would be the competition of the synapses of a given neuron over
some limited resource factors that are essential in efficacy growth. 1t should be realized that the synaptic
efficacies  Mi(!) need notbe linearly related to euch resource factors and thus in the denominator of the
equation above there is no reason to prefer e.g. the linear sum to some other form like the one suggested
there. The equation above produces a very specific type of behaviour for the model neuron: if the input
vectors  [&y(1),...,&(0)] fort = 1,2,... areregarded as a vector-valued stochastic process, the

the neural unit tends to become a principal component analyser for the input process.

Neural Network Design for PCA

Consider a network with # inputs, 2<n linear hidden units, and n linear output units. Given an input, the goal
is to reproduce it at the output so the network acts as autoencoder, mapping an input pattern to itself.

Figure 3. An autoencoder network maps an input vector to itself reducing dimensionality

The hidden layer acts as bottleneck tha forces the network to form a compressed representation for the data.
Tha hidden layer activities are a linear functions of the inputs but the hidden ¢ayer is smaller then the input
dimension so some informations must necessarily be lost, in general. The best hidden layer representarion will
be on that preserves as much information about the input as possible. Ideally, it will ignore nonessential noise
and reproduce only the most significant features of the input pattern,

The optimal hidden unit weights are determined by a set of vectors spanning the singular value decomposition
of the input data. That is, the ideal representation formed at the hidden layer span the same space as the &
eigenvectors corresponding to the / largest eigenvalues of the covariance matriz of the training data. The
network is linear so it cam be collapsed into a single linear transformation x=Fx. The rank of F is limited in the
preceding by A, the dimension of the hidden layer.

Many papers have been written on the links between neural networks and principal components analysis and
Justas linear autoencoder implements a form of PCA, its has been shown that a single-hidden-layer nilar
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network trained to perfoem classification with 1-of-N target representation implements a form of discriminate
analysis .

Experiment

The nucleotides from a gene sequence where converted in real numbers between 0.2 and 0.7. From position
0, the real numbers representing the nucleotides were added by a factor of value (.0002. This technic makes
the position of the nucleotide in the sequence relevant.

Example of the data before the conversion:

algececicac aggaaacaga aticaaacac tlagacaalc aatalaaaga tgaagigaac gotcttaaag agaagitgga aaattigcag gaacaaalca
aaglicaaaa aaggatagaa gaacaagaaa aaccaagaaa atggtggpeoea ctatggcgaa aaatagatga ttcagttaaa aagaaagttc cagaattgeg
atttaaagga tttacggatg attgggaaga gegtaagitg ggagaattat ctaatatigt gggeggtgga acaccaagta catcgaactc tgaatactgg
gacggtgata (tgactggta tgctccaget gaaattggag aacaaaggta tgitaglaaa agtaaaaaga ctattactga actaggicta aagaagagcet
cagctagaal tllaccagta gpaactgtet tatttactic tegtgetggt atcggaaaca cegetatatt aggtaaagaa getacaacta accaagggtt teaatcaatt
gifcctaatc caaataaact tgatagitat titatttati caagaactaa tgaacttaag cgglatggty aagtcaccgg (geaggalcet actutgttg

Example of the data after the conversion:
0.02

0.025005

0035014
0.030017995959999996
0.030023999999999995
0.030029995999999904
0.025029999959999997
0.030041999999999996
0.020031999999999998
0.0300539999994999994
0.020043999999999996
0.035084
0.035009099999999999

0.0200559999959999994

After the converstion, all the nucleotides are represented by real numbers in with the position is garanteed. So,
the sequence can be submitted to the Neural Network.

The results can be observed by the follow program cutput:

Input file name: datal dat
No. of rows, n = 1239

No. of cols, m = 2

Input data sample follows as a check, firsi 4 values.
valuwe = 0.02

value = 0.02

value = 0.020004
value = 0.025003

Variable means:
0,0297 0,0297

Variable standard deviations:
0,0068 04,0068

SSCP or sums-of-squares and cross-products matrix:
{Note: correlations in this implementaiion)
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Loo 010
0.10 1.00

Eigenvectors (leftmost col <—> largest eval):

0.7071  -0.7071
0.7071  0.7071

Eigenvalues and as cumulative percentages:
1,0991 0,9009

54,9565  100,0000
Row projections in new principal component space: (parcial)

-0.0574  0.0001
-0.0427  0.0148
0.0312  -0.0002
0.0017  -0.0001
-0.0131  0.0147
-0.0131  0.0147
-0.0426  0.0148
-0.0130  0.0147

Column projections in new principal. compomponent. space.
07413  -0,6711

07413  0.6711

The output above shows the result of the comparison of 2 genes of the same family organism. The column
projections demonstrate the high degree of similarity. The eigevalues, the standard deviation and the mean are
identical. This demonstrates that the Neural Network PCA can identify similarities between gene sequences.

After 10 experiments with the same family of genes, all of then converged to the same result: all the genes
belong to the same organism family. With 10 experiments using genes sequence of different families of organisms,
the NNPCA converged showing demonstrating that the genes are different. So, 100% of the experiment
brings optimal results.

RESUMO

As Redes Neurais artificiais podem ser utilizadas para um grande niimero de aplicagdes das mais diferentes
dreas. Variagoes de parimetros e arquiteturas fazem com que uma rede neural responda de maneira diferente
e especifica. Por esse motivo, sdo utilizadas como solug@o em problemas diversos. Este trabalho apresenta
um tipo especial de Rede Neural que implementa o método de Andlise de Componentes Principais e efetua
andlises de seqiiéncias DNA.

PALAVRAS-CHAVE: Redes Neurais Artificiais. Andlise de Componentes Principais. Modelo de Neurénio
de Hebbian.
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