
386

 Interface Tecnológica - v. 17 n. 2 (2020)

EFFICIENCY IN WRITING SOFTWARE WITH VIM

EFICIÊNCIA NA ESCRITA DE SOFTWARE COM O VIM

Bruno Coimbra de Oliveira – b-coimbra@homail.com

Faculdade de Tecnologia (Fatec) – Taquaritinga – SP – Brasil

Jederson Donizete Zuchi – jederson.zuchi@fatec.sp.edu.br

Faculdade de Tecnologia (Fatec) – Taquaritinga – SP – Brasil

DOI: 10.31510/infa.v17i2.1066

Data de publicação: 18/12/2020

ABSTRACT

Modal editing is a, nowadays rare, concept that offers multiple interaction modes which are

optimized for specific types of actions and interactions within a text editor. This study aimed

to provide insight on the pros and cons of using a nowadays considered “outdated” piece of

software called Vim for daily usage, and how its rationale helps its users to realize their

objectives in an efficient and powerful manner. Furthermore, a test case with several subjects

was put into place to gauge exactly how Vim compares to a standard editor on a particular

scenario with timed comparison, following up on an analysis that was made based on the results

of that experiment. Ultimately, it was concluded that, even for an old-fashioned tool, when

certain criteria were met, Vim still posed as a strong contender for automating repetitive tasks,

performing considerably faster than its adversaries. This experiment also served as a motive to

demonstrate what might be gained from a tool with such a difficult learning curve.

Keywords: Text editors. Modal Editing. Vim. IDE.

RESUMO

A edição modal é um conceito, hoje raro, que oferece vários modos de interação que são

otimizados para tipos específicos de ações e interações dentro de um editor de texto. Este estudo

teve como objetivo fornecer uma visão sobre os prós e contras do uso de um software hoje

considerado “desatualizado” chamado Vim para uso diário, e como sua filosofia ajuda seus

usuários a realizarem seus objetivos de maneira eficiente e poderosa. Além disso, um

experimento com vários indivíduos foi conduzido para avaliar exatamente como o Vim se

compara a um editor padrão em um cenário específico com comparação cronometrada,

seguindo uma análise que foi feita com base nos resultados desse experimento. Por fim,

concluiu-se que, mesmo para uma ferramenta antiquada, quando certos critérios eram

atendidos, o Vim ainda se apresentava como um forte candidato à automação de tarefas

repetitivas, com desempenho consideravelmente mais rápido que seus adversários. Esse

experimento também serviu como razão para demonstrar o que pode ser ganho com uma

ferramenta que possui uma curva de aprendizado difícil.

387

 Interface Tecnológica - v. 17 n. 2 (2020)

Keywords: Editores de Texto. Edição Modal. Vim. IDE.

1 INTRODUCTION

 With the surge of new text editing software, their latest, modern features brought a

decline to the popularity of lesser-known text editors, including “modal” editors, derivatives of

the Vi editor et al. Although the concept of a modal editor was not completely diminished,

according to Stack Overflow's yearly survey (Developer Survey), the data shows that Vim has

been hovering between the mark of 20% to 25% in terms of popularity when compared to other

text editors such as Notepad++ and Visual Studio Code, which rated at around 30% to 50%

respectively (DEVELOPER SURVEY RESULTS, 2019).

Figure 1 - Graph comparing the popularity relevance of several text editors over the span of

20 years.

Source: Stack Overflow’s Developer Survey (2017).

388

 Interface Tecnológica - v. 17 n. 2 (2020)

The appeal that has made Vim stuck around for nearly 30 years since its initial release

stems from its origins, and most importantly, from its distinct philosophy when compared to

standard editors. Although it looks difficult to learn at first, there are only two main ideas that

need to be grasped to really understand it – they are “modal editing” and operators. Ultimately,

the purpose of Vim is to enable you to edit text effectively (ILIC, 2017). With that in mind, Vim

does not operate in the process of inserting text per se, but instead, it mainly operates on editing

and navigating through text. According to Ilic (2017, p. 16), when programmers are writing

code, they likely are not spending most of their time typing, but rather moving around through

existing code and editing them.

Nowadays, most developers are content with writing code in their modeless text editors,

or are oblivious to an alternative way to edit text. The term modeless refers to the fact that each

interface element has only one function, whereas a modal interface performs a different action

based on context (OSIPOV, 2018). In itself, developers utilizing modeless text editors as their

main tool for writing code are not frowned upon. Nonetheless, as McDonnell (2014, p. 1) states:

“How you go about writing text is up to you, but the tools you use will determine how efficient

you are at carrying out certain tasks. The more efficient you are, the quicker you’ll complete

that task [...]”.

The reason why modal editing is so neglected is seemingly due to a big compromise for

some developers, which is the exclusive use of the keyboard instead of the traditional

conjunction with the keyboard and mouse (THE VALUABLE DEV, 2019). Although the idea

of limiting yourself to the keyboard might seem inconvenient, this article will strive to prove it

otherwise – whilst encompassing some of the main characteristics that make Vim such a unique

tool, and ultimately, what makes it so powerful once mastered.

2 TEXT EDITORS AND WORD PROCESSORS

 There are many different circumstances under which one will have to work with text.

As such, it is important to recognize the uses for which different text-based pieces of software

are intended. These programs generally fall under two categories: word processors and text

editors (IDRH, 2014).

2.1 Text Editors

389

 Interface Tecnológica - v. 17 n. 2 (2020)

 As Finseth (1991, p. 13) defines it: “In its most general form, text editing is the process

of taking some input, changing it, and producing some output.”, in that regard, a text editor is

simply a medium between sending input to the computer and that input being shown on the

screen. Moreso, as the name implies, it offers a plethora of tools for the sole purpose of editing

text. As with most text editors, they come with the most basic tools such as copying, replacing

and “cutting” text. These are the main components of editing text.

Additionally, as (COTTRELL, 1999) describes it: “A text editor has the usual apparatus

of pull-down menus and/or clickable icons for functions like opening and saving files, searching

and replacing, checking spelling and so on. But it has no typesetting functionality.”, this

statement makes it clear that text editors are inept of creating visual representations of text

beyond syntax highlighting and making use of the features that a font provides (such as making

characters appear in bold, italic, underlined etc.), which he then further adds: “The text you type

in text editors appears on screen in a clear visual representation, but with no pretense at

representing the final printed appearance of the document”.

2.2 Word Processors

 A word processor, on the other hand, is essentially any program capable of formatting

text and other types of media (e.g. images) for physical or electronic printing. In contrast to a

text editor, a word processor gives the user extensive control over the visual qualities of the

document (IDRH, 2014).

To summarize, despite the fact that text editors and word processors are used for distinct

purposes, they are similar in concept – both are tools for manipulating characters on the screen.

Typically, writing code and writing english words are quite different activities. Compared to

writing paragraphs to formulate sentences, when programming, you spend more time reading,

switching files, navigating and editing code. This validates why different types of programs for

writing code versus English words exist (e.g. Visual Studio Code versus Microsoft Word).

Furthermore, to demonstrate the distinction between a file created by a text editor and a

word processor on a rudimentary level, below is a shortened view of the contents of a file

created by a word processor once opened by an arbitrary text editor:

Figure 2 - Example of the contents of a Word document opened with a text editor.

390

 Interface Tecnológica - v. 17 n. 2 (2020)

Source: IDRH (2014).

The figure above shows that while the contents of a file created by a text editor will

appear the same to other text editors, a document created by a word processor contains special

metadata used for representing the visual formatting of the text contents (COTTRELL, 1999).

3 BRIEF HISTORY OF TEXT EDITORS

Preceding the invention of the Vi editor or any other screen editor for that matter, people

communicated with computers on printing terminals, which worked rather primitively

compared to nowadays’ screens. These environments were once the norm for interactive

computing, and it gave way to the existence of the so-called “line editors”. Since line numbers

were a way to discern a part of a file to be worked on – line editors evolved to edit those files

(LAMB, 1994, ch. 5). Those line editors were available in closely identical form on nearly

every UNIX system, which reaffirms (KLEENE, 2020)’s assertion that “[...] text files are the

lingua franca of computers”, despite having no practical use nowadays (unless support for a

screen editor on a particular terminal is lacking), line editors are considered to be a relic of an

earlier age in computing.

Subsequently, it took several years of incremental improvements for modern editors

such as we have today to come to fruition. To understand how they came to be, it is vital to

understand where they came from and how they evolved throughout the decades (KING, 2020).

Illustrated below is an exemplified timeline of the evolution of text editors (N.B. many

editors were omitted since they branched from vi, but had relatively low popularity relevance).

391

 Interface Tecnológica - v. 17 n. 2 (2020)

Figure 3 - Timeline of popular text editors.

Source: Author (2020).

4 THE VI EDITOR

The vi editor is the original root of the Vim family tree. It was created by Bill Joy in

1976 for an earlier version of the BSD (Berkeley Software Distribution) operating system. The

name “vi” is an abbreviation of “visual in ex”, which, as the name indicates, was an extension

of the most common editor back then, the “ex” editor. At the time, vi was just a command that

started the ex editor in one of its modes – the visual mode (SCHULZ, 2007, p. 8).

Vi was one of the first editors to introduce the concept of modality – which editors like

Vim have inherited. It has several limitations, however, that its derivatives have aimed to solve.

According to (SCOSALES, 1991), for the early versions of vi, those limitations were as follows:

● The inability to edit binary files (such as compiled programs);

● Only supporting a maximum line length of 1024 characters;

● Having a maximum file size limit of 250,000 lines at most;

● Maximum of 14 characters in a filename;

On the other hand, these limitations were put into place due to the fact that vi was

developed at a time when Unix systems were considerably less stable than they are today, with

severe constraints such as limited system resources, slow networks, no digital displays and no

mouse. The vi user of yesteryear had to be prepared for the system to crash at arbitrary times

(ROBBINS, p. 6, 2008). Due to the hardware limitations posed by those early machines, vi was

designed to fit those needs accordingly. Nowadays, we can still find relics of those design

decisions in vi, such as the navigation keys (CASSEL, 2020).

Figure 4 - Directional keys of the Vim editor.

392

 Interface Tecnológica - v. 17 n. 2 (2020)

Source: Author (2020).

The letters shown in the figure above, for instance, were used for navigation keys instead

of the conventional cursor keys for the reason that Bill Joy (the creator of vi) used a video

terminal with built-in keyboard with no cursor keys to develop vi. This also accounted for why

a single-letter key on the keyboard performed various actions, as vi lacked support for a mouse

(CASSEL, 2020).

All things considered, Bill Joy considers vi a tool that was designed for a world that is

now extinct. According to him, those decisions were not exactly superior to what we use today,

just a necessity of that particular time period, as stated by him in an interview: “People don’t

know that vi was written for a world that doesn’t exist anymore.” (CASSEL, 2020).

5 THE VIM EDITOR

The Vim editor is one of the many derivatives of the original “vi” editor (SCHULZ,

2007, p. 8). It was created by Bram Moleenar in 1988 by using the existing STEVIE vi clone

as a starting point, and is broadly considered to be almost a proper superset of vi. Therefore,

everything that is in vi is available in Vim, hence why it stands for “Vi IMproved” (TWO-BIT

HISTORY, 2018).

Vim earned its place as the most popular editor amid the Linux community back in 2006

(TWO-BIT HISTORY, 2018). As of now, according to Stack Overflow’s 2020 Developer

Survey, Vim is the most popular text-mode (i.e. terminal emulator) editor, particularly amongst

40% of SysAdmin/DevOps people, and 25.8% for “average” software developers

(DEVELOPER SURVEY RESULTS, 2020).

As with most things, an effort must be placed to achieve the desired knowledge. This

motto is especially true for Vim’s learning curve, as it heavily relies on muscle memory and

touch typing abilities (the ability to use muscle memory to find keys fast, without using the

sense of sight), as (NEIL, 2012, p. 1) prefaces his book: “Vim traces its ancestry back to the

classic Unix editors. These predate the mouse and all of the point-and-click interfaces that came

with it. In Vim, everything can be done with the keyboard. For the touch typist, that means Vim

does everything faster”.

On the other hand, this dependence on muscle memory excludes a substantial amount

of potential users. The average productivity levels of a person tend to go down once when they

393

 Interface Tecnológica - v. 17 n. 2 (2020)

are introduced to a new tool that replaces their previous one. The reason for this, according to

(ILIC, p. 11-14, 2017) is that they have to relearn a whole slew of new key-bindings and

memorize where things are located inside the program from scratch, essentially rebuilding their

muscle memory from anew. In contrast to the previous statement, Bram Moleenar, the creator

of Vim himself, analogically wrote: “Learning to drive a car takes effort. Is that a reason to keep

driving your bicycle? No, you realize you need to invest time to learn a skill. Text editing isn’t

different. You need to learn new commands and turn them into a habit” (ILIC, p. 11, 2017).

Vim is often described as a “language for text editing”, similarly to how a programming

language would work. This similarity is observed on how the vast number of very specific

commands can be combined in useful ways to cause an action to occur (MOSER, 2015). NEIL,

Drew (p. 18, 2012) compares this mechanism to playing chords, notes and melodies on a piano.

Even more, there is an element of strategic and intentional placing of those commands on the

keyboard, all with the goal of accomplishing the greatest amount of work with the least number

of keystrokes (MOSER, 2015).

6 METHOD

For the sake of providing a solid comparison between Vim and other text editors, an

experiment was conducted with five anonymous subjects, all of which are software developers

with roughly the same experience. The data collected from the results of the experiment was

used to study the effectiveness of using Vim as the primary tool for editing text from a software

developer standpoint. Furthermore, to better understand how the results were achieved for

Vim’s case, this given study was primarily based on the bibliographic review of books, articles

and online surveys (see Figure 1).

The subjects were asked to refactor a file with a list of unordered numbers, without

changing the order of the lines, into an ordered list (increasing), as illustrated by the image

below.

394

 Interface Tecnológica - v. 17 n. 2 (2020)

Figure 5 - Scenario taken by the subjects.

Source: Author (2020).

After the subjects performed the scenario above, the results were as follows:

Figure 6 - Test case results.

Source: Author (2020).

Upon analysis of the results, the discrepancy between the results from standard editors

and the Vim subject is evident. The sample used for this test case is considerably small, however,

considering that in real world scenarios there would be a need to refactor even larger file sizes,

the elapsed time would grow exponentially for the standard editors, whereas for Vim’s case, it

would remain constant.

Additionally, the series of keystrokes performed by the Vim subject can be viewed in

the image below.

395

 Interface Tecnológica - v. 17 n. 2 (2020)

Figure 7 - Commands used by the Vim editor to reorder a list of numbers.

Source: Author

7 CONCLUSION

An ordinary programmer will come across many different tools to aid him during his

career. Plenty of those tools will be aimed at manipulating code, such as text editors and

integrated development environments (IDEs). According to (ZUKERMAN, 2011) we often

reject ancient pieces of software with the mindset that “newer is better”, even though they are

still actively used by plenty of users. If we take a look at how Microsoft Word (first released in

1990) progressed over the decades, we can observe that it has not degraded or remained stale

functionality-wise throughout the years, but instead, that it has evolved due to the maturity that

it possesses. The same can be said about Vim, it is based on a much older editor called Vi, and

continues to preserve its longevity with the help of its devout community, ensuring that Vim

continues to catch up with modern technologies for manipulating text in the future.

 To conclude, given that one of the core roles of a software developer is to write code,

text editing itself poses a big importance in their lives, thus, it is worth turning a critical eye

toward how well our tools facilitate this specific activity.

REFERENCES

CASSEL, David. A Look at Vim, a Text Editor for the Ages. Available at:

<https://thenewstack.io/a-look-at-vim-a-text-editor-for-the-ages/>. Accessed in: aug. 31st,

2020.

CERUZZI, Paul E. A History of Modern Computing. 2nd ed. London, UK: The MIT Press,

p. 15, p. 47, apr. 2003.

https://thenewstack.io/a-look-at-vim-a-text-editor-for-the-ages/

396

 Interface Tecnológica - v. 17 n. 2 (2020)

COTTRELL, Allin. Word Processors. jun. 29th, 1999. Available at:

<http://ricardo.ecn.wfu.edu/~cottrell/wp.htm>. Accessed in: sep. 17th, 2020.

DEVELOPER SURVEY RESULTS 2017. Stack Overflow. Available at:

<https://insights.stackoverflow.com/survey/2017>. Accessed in: sep. 13th, 2019.

DEVELOPER SURVEY RESULTS 2019. Stack Overflow. Available at:

<https://insights.stackoverflow.com/survey/2019>. Accessed in: jul. 27th, 2019.

FINSETH, A. Graig. The Craft of Text Editing: A Cookbook for an Emacs. St. Paul

Minnesota: Springer-Verlag & Co, feb. 1991.

GNU. The GNU ed line editor. feb. 20th, 2020. Available at:

<http://www.gnu.org/software/ed/manual/ed_manual.html>. Accessed in: oct. 6th, 2020.

HINZ, Marco; BROWN, George; et al. Vim Galore. Everything you need to know about

Vim. Available at: <https://github.com/mhinz/vim-galore/>. Accessed in: sep. 3rd, 2020.

IDRH. Text Editors and Word Processors. may 20th, 2014. Available at:

<https://idrh.ku.edu/text-editors-and-word-processors>. Accessed in: sep. 15th, 2020.

ILIC, Jovica. Mastering Vim Quickly. Berlin, Germany: Jolesoft, p. 11-16, nov. 2017.

KING, Brian. The History of Modern Text Editors. jul. 20th, 2020. Available at:

<https://blog.grio.com/2020/07/the-history-of-modern-text-editors.html>. Accessed in: sep.

24th 2020.

KLEENE, Robin. The Era of Visual Studio Code. sep. 21st, 2020. Available at:

<https://blog.robenkleene.com/2020/09/21/the-era-of-visual-studio-code/>. Accessed in: sep.

25th, 2020.

LAMB, Linda. Learning the vi Editor. 5th ed. aug 1994. Available at:

<https://www.cs.ait.ac.th/~on/O/oreilly/unix/vi/index.htm>. Accessed in: oct. 6th, 2020.

MCDONNELL, Mark. Pro Vim. 1st ed. Apress, nov. 2014.

MOSER, R. Gary. Some thoughts on Vim. mar. 17th, 2015. Available at:

<https://blog.revolutionanalytics.com/2015/03/some-thoughts-on-vim.html>. Accessed in:

oct. 10th, 2020.

NEIL, Drew; POPE, Tim; KEPPLER, Kay. Practical Vim: Edit Text at the Speed of

Thought. Dallas, Texas: The Pragmatic Bookshelf, oct. 2012.

ORST, Andrey. Text Editors. Available at: <https://andreyorst.gitlab.io/posts/2020-04-29-

text-editors/>. Accessed in: aug. 24th 2020.

OSIPOV, Ruslan. Mastering Vim: Build a software environment with Vim and Neovim.

Birmingham, UK: Packt Publishing Ltd, p. 6-7, nov. 2018.

http://ricardo.ecn.wfu.edu/~cottrell/wp.htm
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2019
http://www.gnu.org/software/ed/manual/ed_manual.html
https://github.com/mhinz/vim-galore
https://idrh.ku.edu/text-editors-and-word-processors
https://blog.grio.com/2020/07/the-history-of-modern-text-editors.html
https://blog.robenkleene.com/2020/09/21/the-era-of-visual-studio-code/
https://www.cs.ait.ac.th/~on/O/oreilly/unix/vi/index.htm
https://blog.revolutionanalytics.com/2015/03/some-thoughts-on-vim.html
https://andreyorst.gitlab.io/posts/2020-04-29-text-editors/
https://andreyorst.gitlab.io/posts/2020-04-29-text-editors/

397

 Interface Tecnológica - v. 17 n. 2 (2020)

PETERSON, Mickey. Mastering Emacs. Blurb Incorporated, p. 13-16, may 23rd, 2015.

ROBBINS, Arnold; HANNAB, Elbert; LAMB, Linda. Learning the VI and VIM Editors:

Text Processing at Maximum Speed and Power. 7th ed. Sebastopol, CA: O’Reilly Media,

Inc., jul 2008.

SCHULZ, Kim. Hacking Vim: A cookbook to get the most out of the latest Vim editor.

Birmingham, UK: Packt Publishing Ltd, may 2007.

SCOSALES. The editor vi and its limitations. 1992. Available at:

<https://www.scosales.com/ta/kb/103472.html>. Accessed in: mep. 2nd, 2020.

THE VALUABLE DEV. Is Vim Really Not For You? A Beginner's Guide. oct. 28th 2019.

Available at: <https://thevaluable.dev/vim-for-beginners/>. Accessed in: sep. 3rd, 2020.

TWO-BIT HISTORY. Where Vim Came From. aug. 5th, 2018. Available at:

<https://twobithistory.org/2018/08/05/where-vim-came-from.html>. Accessed in: sep. 14th,

2020.

WILLIAMS, Al. Editor Wars. jul. 26th, 2016. Available at:

<https://hackaday.com/2016/07/26/editor-wars/>. Accessed in: oct. 7th, 2020.

WINCENT. Modal Editor. mar. 12nd, 2020. Available at:

<https://wincent.com/wiki/Modal_editor>. Accessed in: oct. 7th, 2020.

ZUKERMAN, Erez. The Top 7 Reasons To Give The Vim Text Editor A Chance. may

12th, 2011. Available at: <https://www.makeuseof.com/tag/top-7-reasons-to-give-the-vim-

text-editor-a-chance/>. Accessed in: oct. 13rd, 2020.

https://www.scosales.com/ta/kb/103472.html
https://thevaluable.dev/vim-for-beginners/
https://twobithistory.org/2018/08/05/where-vim-came-from.html
https://hackaday.com/2016/07/26/editor-wars/
https://wincent.com/wiki/Modal_editor
https://www.makeuseof.com/tag/top-7-reasons-to-give-the-vim-text-editor-a-chance/
https://www.makeuseof.com/tag/top-7-reasons-to-give-the-vim-text-editor-a-chance/

