

OTIMIZAÇÃO DE ROTAS PARA ENTREGA DOS INGREDIENTES DA MERENDA EM ESCOLAS DA CIDADE DE BARRETOS – SP

OPTIMIZATION OF ROUTES FOR DISTRIBUTION OF THE INGREDIENTS OF THE SCHOOL MEALS IN SCHOOLS OF THE CITY OF BARRETOS – SP

Augusto César Tová – augustoctdj@gmail.com Faculdade de Tecnologia (Fatec) – Bebedouro – SP – Brasil

Oswaldo Lazaro Mendes – oswaldo.lazaro@fatecbb.edu.br Faculdade de Tecnologia (Fatec) – Bebedouro – SP – Brasil

> **DOI:** 10.31510/infa.v17i2.1028 Data de publicação: 18/12/2020

RESUMO

O presente artigo tem como objetivo encontrar a rota de menor distância para a entrega dos ingredientes da merenda em 46 escolas da cidade de Barretos – SP, visto que um dos objetivos da logística no que tange transportes, visa buscar a menor rota possível para fazer entregas com agilidade e menor custo. Para a execução desse artigo utilizou-se de pesquisa descritiva, exploratória e quantitativa e para a compreensão do problema proposto utilizou-se o Google Maps, para captação das distâncias, com as escolas e duas entradas da cidade. Este trabalho foi desenvolvido simulando o uso de um caminhão e com dois caminhões devido ao tempo. A fim de encontrar uma rota de menor distância a ser percorrida, o trabalho utilizou-se do Método Evolutionary, do Solver, que é um método capaz de solucionar problemas baseado em algoritmos evolucionários. Como resultado em todos os casos a redução foi expressiva em termos das distâncias percorridas, gerando ganhos em economia de combustível e tempo. Com esse estudo conclui-se que é de suma importância a utilização de tecnologias para que se possa diminuir e otimizar as rotas de entrega, e a ferramenta Solver do Excel se mostra muito eficaz neste quesito.

Palavras-chave: Otimizar. Solver. Rotas. Método Evolutionary.

ABSTRACT

This article aims to find the shortest route for the delivery of lunch ingredients to 46 schools in the city of Barretos - SP, since one of the objectives of logistics in terms of transport, aims to seek the shortest possible route to deliver with agility and lower cost. For the execution of this article, descriptive, exploratory and quantitative research was used and to understand the proposed problem, Google Maps was used to capture the distances, with schools and two entrances to the city. This work was developed simulating the use of a truck and with two trucks due to the weather. In order to find a shorter route to be covered, the work used the Evolutionary Method, from Solver, which is a method capable of solving problems based on evolutionary algorithms. As a result, in all cases, the reduction was significant in terms of the distances

covered, generating gains in fuel economy and time. With this study it is concluded that the use of technologies is of utmost importance in order to reduce and optimize delivery routes, and the Excel Solver tool is very effective in this regard.

Keywords: Optimize. Solver. Routes. Evolutionary Method.

1 INTRODUÇÃO

A otimização é de natureza humana. Desde os primórdios da raça humana, busca-se diminuir nosso empenho e elevar o retorno sobre qualquer trabalho que será feito, sendo que no início de nossas vidas, se restringia apenas em se manter vivo (LOESCH; HEIN, 2017).

Elaborar a roteirização das entregas é de suma importância na logística de transportes. Encontrar a menor rota é essencial para diminuir o tempo e o custo das entregas. E nesse quesito, alguns *softwares* e suas ferramentas podem auxiliar na busca pela melhor rota.

Segundo Bertaglia (2020), existem muitos elementos no trabalho de coletar e entregar produtos e, através do uso do computador, pode-se diminuir o tempo por meio de simulações, permitindo chegar a soluções de acordo com restrições pré-determinadas.

Para Dornier et al. (2007), a logística tem como base a otimização, em busca de minimizar o custo de seus serviços ou maximizar o serviço frente a uma limitação de orçamento.

Conforme Ballou (2009) antes de tudo, a relevância logística é demonstrada pelo tempo e lugar. Mercadorias e atividades não têm valia se não estiverem em domínio dos consumidores na data (tempo) e no local (lugar) em que eles desejam.

Com o intuito de apresentar o melhor percurso para a distribuição dos itens para fazer a merenda nas escolas de Barretos, buscou-se com o auxílio de uma ferramenta, Solver, apresentar a melhor rota para otimizar a distribuição.

O objetivo geral deste artigo é encontrar a menor rota para reduzir a quilometragem percorrida na entrega de ingredientes para merenda em 46 escolas da cidade de Barretos.

Como objetivo específico buscou-se avaliar o percurso do veículo durante a distribuição dos itens para fazer a merenda escolar e verificar a necessidade de utilização de dois caminhões ao invés de um caminhão, para que as entregas sejam feitas no mesmo dia e também apresentar como o uso da ferramenta Solver pode auxiliar na roteirização.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Logística

A logística abrange a ligação de informações referentes ao recebimento, armazenagem, estoque, embalagem e transporte de materiais e produtos. Assim, é essencial que a sincronia destes não seja afetada com uma logística falha, sendo o transporte, nos procedimentos logísticos, a área de maior relevância (GOULART; CAMPOS, 2018).

De acordo com Novaes (2007), a logística tem como foco satisfazer os desejos dos clientes, através do procedimento de elaborar, planejar e monitorar de forma competente o curso e a armazenagem de mercadorias, assim como as informações e atividades relacionadas, contemplando toda sua cadeia, do início ao fim.

Brandalise (2017), reforça que a logística implica movimentação de atividades e recursos desde o início até o final da cadeia logística, e o transporte é responsável pela transferência, obtendo os fluxos destes por toda a cadeia.

2.2 Pesquisa Operacional

Longaray (2017), define a pesquisa operacional como a união de procedimentos que utiliza o método científico para ajudar as pessoas em suas decisões

Segundo Hillier e Lieberman (2013), a pesquisa operacional é utilizada em uma instituição para que ela possa entender a direção e a administração de suas operações.

Hillier e Lieberman (2013), afirmam que a Pesquisa Operacional procura encontrar a "solução ótima" para a amostra que reproduz a adversidade proposta. Em vez de refinar a condição, o propósito é de detectar o melhor rumo a se seguir.

2.3 Método Evolutionary

Apresentado por Xie e Steven (1993, apud Lanes; Greco, 2013), o método Evolutionary (*Evolutionary Structural Optimization - ESO*), fundamentado no Método dos Elementos Finitos (MEF), foi inicialmente projetado por um algoritmo evolucionário, embasado na ideia da adição

de vazios, ou seja, demonstra noções na exclusão gradual de componentes pouco buscados do domínio no decorrer do procedimento. Esse processo é denominado de *hard-kill*.

Segundo Foreman (2018), o algoritmo evolucionário é modelado como o desenvolvimento na biologia:

- Desenvolve um grupo de soluções inaugurais ("patrimônio genético"), praticáveis ou impraticáveis;
- Toda solução tem um grau de duração;
- Soluções desenvolvidas por junções são partes escolhidas e a planejadas por duas ou mais soluções;
- As soluções se transformam em novas;
- Produz-se novas soluções com o intuito de ter uma superior;
- Soluções de menor funcionamento são removidas do patrimônio genético ("seleção").

2.4 Problema do Caixeiro Viajante (PCV)

Rebouças (2016, p. 14) conta que:

No início do século XIX, vários problemas envolvendo grafos, intimamente relacionados ao Problema do Caixeiro Viajante (PCV), foram propostos pelo Matemático Irlandês William Hamilton. Um deles, nomeado por Ball como o "Jogo de Hamilton", consistia em determinar uma rota ao longo das arestas de um dodecaedro regular, passando por todos os vértices, sendo cada um visitado uma única vez. Apesar dos problemas propostos, a primeira abordagem formal do PCV foi apresentada por Hassler Witney, em um seminário na Universidade de Princeton, em 1934.

Segundo Gaspar-Cunha, Takahashi e Antunes (2012), o Problema do Caixeiro Viajante se define como a vontade de mover-se pela rota mais curta, o vendedor passa apenas uma vez por cada cidade, iniciando de uma cidade e retornando a ela no final do percurso.

Silva e Oliveira (2006), complementam que o PCV é uma amostra comum da questão de otimização. A partir do momento em que se tem um grupo de n cidades e a distância entre elas, se tem que estabelecer qual rota irá ser percorrida passando por todas as n cidades apenas uma vez voltando ao ponto de origem, em que a soma dessa distância seja a menor possível.

3 PROCEDIMENTOS METODOLÓGICOS

Gil (2002) explica a pesquisa como "o procedimento racional e sistemático que tem como objetivo proporcionar respostas aos problemas que são propostos". Neste artigo foram feitas pesquisas bibliográficas através de livros, artigos e internet.

A pesquisa deste é artigo é descritiva, e Gil (2002, p. 42), a elucida como:

As pesquisas descritivas têm como objetivo primordial a descrição das características de determinada população ou fenômeno ou, então, o estabelecimento de relações entre variáveis. São inúmeros os estudos que podem ser classificados sob este título e uma de suas características mais significativas está na utilização de técnicas padronizadas de coleta de dados, tais como o questionário e a observação sistemática.

O trabalho parte de uma abordagem quantitativa que, conforme Fonseca (2002), voltase ao estilo matemático para retratas os motivos de um acontecimento, as suas ligações entre variáveis etc. Da Fonseca (2016) complementa "quando uma pesquisa se vale desse tipo de método, ela busca analisar a frequência de ocorrência pra medir a veracidade ou não daquilo que está sendo investigado".

O artigo apresenta finalidade de pesquisa aplicada. Cooper e Schindler (2016) estabelecem como uma pesquisa com foco prático em resolver alguma adversidade, isso quer dizer que ela é direcionada para buscar soluções a problemas específicos referente a atividade, performance ou vontade.

Para o desenvolvimento deste artigo foi utilizada a planilha eletrônica Excel, onde foram feitas várias planilhas com a base de endereços de 46 escolas e 2 entradas da cidade de Barretos – SP, além de outras 4 planilhas contendo as 46 escolas em todas elas, e dividindo elas com: entrada 1; entrada 2; entrada 1 e saída(entrada) 2; entrada 2 e saída(entrada) 1.

Após o desenvolvimento das planilhas, usou-se a "função índice" do Excel em cada uma das planilhas para buscar os valores das distâncias (neste trabalho em metros) nas tabelas, para assim usar a "função soma" e detectar qual a distância percorrida. Assim, então, partiu-se para o uso da ferramenta Solver do Excel, para inserir as restrições e determinar que a ferramenta encontrasse o valor mínimo a ser percorrido. E para isso, aplicou-se o Método Evolutionary, que é uma função da ferramenta Solver, com a finalidade de chegar a menor distância a ser percorrida e qual rota deveria ser feita.

Ao obter os resultados, foi feita uma divisão das escolas para que dois caminhões fizessem as entregas cada um partindo de uma das entradas, a fim de diminuir o tempo das

entregas, visto que, além do tempo para percorrer a rota, soma-se também o tempo para descarregamento.

Na fase de coleta de dados foi usado o Google Maps, para encontrar e determinar as distâncias, em metros, entre as 46 escolas e as duas entradas para a entrega de merendas da cidade de Barretos.

4 RESULTADOS E DISCUSSÃO

Para dar início aos resultados, foram coletados os nomes e endereços das 46 escolas e das duas entradas para poder determinar as distâncias entre elas

O Quadro 1 conta com os nomes das 46 escolas e as 2 entradas da cidade de Barretos – SP, usadas para este estudo.

Quadro 1 – 46 escolas e duas entradas da cidade de Barretos – SP

		ESC	OLAS
1	E.M. ANA CARVALHO CASTANHO (EJA)	25	CEMEI DR. LUIS SPINA
2	E.M. ANÁLIA FRANCO	26	CEMEI HUMBERTO MINARÉ
3	E.M. CHRISTIANO CARVALHO (EJA)	27	CEMEI OLÁVIO LOPES
4	E.M. SÃO FRANCISCO 5ª A 8ª SÉRIE (EJA)	28	CEMEI ROBSON ROSALINO DA SILVEIRA
5	E.M. PROF. DORIVAL TEIXEIRA	29	CEMEI ANNA KERULIS DA SILVEIRA
6	E.M. PROF. JOÃO FERREIRA LOPES	30	CEMEI ANTONIO DALLA COSTA
7	E.M. FAUSTO LEX	31	CEMEI CLEUZA PEREIRA BARRETO
8	E.M. JOÃO BARONI	32	CEMEI DO BAIRRO RIOS
9	E.M. LEODETE SILVEIRO JOI	33	CEMEI FERNANDA TEIXEIRA DE ALMEIDA
10	E.M. LUIZA PARASSU BORGES	34	CEMEI IRMÃ ELZA MARTHA MARTHÉIA
11	E.M. MARLENE CARBONI PEREIRA (EJA)	35	CEMEI IZADORA BEVILÁCQUA DE SOUZA MERENDA
12	E.M. MATILDE GITAY DE MELO (EJA)	36	CEMEI JOSÉ PEREIRA NEVES
13	E.M. PROF. DOROTHÓVIO DO NASCIMENTO	37	CEMEI PROF. LUIZ PARO NETO
14	E.M. PROF. GIUSEPPE CARNIMEO (EJA)	38	CEMEI LUZIA COSTA FERNANDES
15	E.M. PROF. LUIZ CASTANHO FILHO	39	CEMEI MÃE COMERCIÁRIA PROFESSORA CÉLIA REGINA AIELO
16	E.M. PROF ^a MARIA ALVES BARCELOS DE OLIVEIRA	40	CEMEI D. MARIA FERNANDES RODRIGUES
17	E.M. PROF ^a OLGA ABI RACHID MORAES (EJA)	41	CEMEI ORIVAL LEITE DE MATOS
18	E.M. ROTARY CLUB - VILA MARILIA (EJA)	42	CEMEI PAULO BELMIRO FERREIRA
19	E.M. SAGRADOS CORAÇÕES	43	CEMEI ROSA DE SANTIS RIBEIRO
20	E.M. ZULEICA INÁCIO LOPES FERRAZ	44	CEMEI TENENTE AFONSO CAMARA FILHO
21	CEMEI ABDALA MEHDE REZECK	45	CEMEI VERIDIANA DA SILVA
22	CEMEI AMADOR ALVES DE QUEIROZ	46	CEMEI ELZA MARIA PITTA BEZERRA

23	CEMEI DO BAIRRO BARONI	47	Entrada 1 - Av. João Batista da Rocha, 900 - Nova
			América
24	CEMEI DO BAIRRO BARONI II	48	Entrada 2 - Av. Eng. Necker Carvalho de Camargo,
			2711 - América

Fonte: Prefeitura Municipal de Barretos (2020)

4.1 Utilizando 1 caminhão para as entregas

Na Tabela 1 tem-se os resultados das distâncias percorridas entre a entrada 1 com as 46 escolas em sequência, e a rota otimizada.

Tabela 1 – Distâncias, em metros, entre a entrada 1 e as 46 escolas

Início							Google	e Maps						
Escolas	47	1	2	3	4	5	6	7	8	9	10	11	12	
Distâncias		8500	4200	1900	6800	4000	4100	2300	2700	5700	2400	5800	1500	
Escolas	12	13	14	15	16	17	18	19	20	21	22	23	24	
Distâncias		7600	750	5400	3300	7200	7300	3000	5300	2500	7200	3600	190	
Escolas	24	25	26	27	28	29	30	31	32	33	34	35	36	
Distâncias		4600	4100	5800	6000	7800	6400	3200	3600	6400	2800	7400	9600	
Escolas	36	37	38	39	40	41	42	43	44	45	46			Total
Distâncias		3000	5200	4200	1700	5800	1900	650	4400	4400	5000	6000		21319

Final			Método Evolutionary												
Escolas	47	35	17	7	21	11	31	12	27	40	39	10	23		
Distâncias		3000	1500	1100	200	2200	52	1600	350	3400	2000	1200	700		
Escolas	23	24	28	16	46	4	37	15	18	5	45	36	9		
Distâncias		190	2200	550	700	500	2900	160	1100	1500	550	650	1300		
Escolas	9	34	43	41	25	29	14	1	13	33	38	22	19		
Distâncias		850	1000	1100	500	2800	350	95	350	1000	550	1500	130		
Escolas	19	26	42	2	30	3	32	20	6	44	8			Tot	
Distâncias		1000	2900	1000	1900	750	2100	550	650	550	700	1000		52 9	

Fonte: elaborada pelos autores (2020)

De acordo com a Tabela 1, a distância percorrida após ser otimizada pelo Método Evolutionary foi de 52927 metros, partindo de uma distância de 213190 metros, gerando uma redução de 75,13% em relação a rota inicial. Após ligar essa rota no Google Maps, o tempo para percorrer a rota é de 177 minutos.

Fazendo o mesmo procedimento, substituindo a entrada 1 pela entrada 2, nota-se na Tabela 2 que a distância em relação a entrada 1 é maior.

Tabela 2 – Distância, em metros, entre a entrada 2 e as 46 escolas

	_				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0							
Início							Google	e Maps	1				
Escolas	47	1	2	3	4	5	6	7	8	9	10	11	12
Distâncias		7300	4200	1900	6800	4000	4100	2300	2700	5700	2400	5800	1500

l	1.0	1.0	۱.,	1.5	1.6	1.7	1.0	1.0	1 20	۱ ۵۱	۱ ۵۵	۱ ۵۵	ا م	Ī
Escolas	12	13	14	15	16	17	18	19	20	21	22	23	24	
Distâncias		7600	750	5400	3300	7200	7300	3000	5300	2500	7200	3600	190	
Escolas	24	25	26	27	28	29	30	31	32	33	34	35	36	
Distâncias		4600	4100	5800	6000	7800	6400	3200	3600	6400	2800	7400	9600	
Escolas	36	37	38	39	40	41	42	43	44	45	46			Total
Distâncias		3000	5200	4200	1700	5800	1900	650	4400	4400	5000	4600		210590
Final			Método Evolutionary											
Escolas	47	8	44	6	32	3	30	20	28	16	46	4	18	
Distâncias		1000	850	750	600	1600	25	2600	3900	550	700	500	2900	
Escolas	18	24	23	10	45	9	43	41	25	1	13	29	14	
Distâncias		800	190	950	1700	1700	1000	1100	500	2500	350	950	350	
Escolas	14	33	38	26	19	22	5	37	15	36	34	27	21	
Distâncias		650	550	900	1000	130	1900	2300	160	2600	1600	1700	850	
Escolas	21	7	35	17	12	11	31	2	42	39	40			Total
Distâncias		200	1100	1500	1300	1600	52	3800	1300	2100	1700	850		57907
				F	onte:	elabor	ada pe	los au	tores (2	2020)				·

Conforme a Tabela 2, a distância percorrida foi de 57907 metros, partindo de uma distância de 210590 metros, a redução neste caso foi de 72,5% em relação a rota inicial, sendo 183 minutos o tempo para percorrer.

Outras duas tabelas foram feitas: uma utilizando a entrada 2 como saída da entrada 1; e a entrada 1 como saída da entrada 2.

As Tabela 3 e Tabela 4 apresentam os resultados obtidos.

Tabela 3 – Distâncias da Entrada 1, passando pelas 46 escolas e indo para a Saída(entrada) 2

	1						_				-			
Início							Google	e Maps						
Escolas	47	1	2	3	4	5	6	7	8	9	10	11	12	
Distâncias		8500	4200	1900	6800	4000	4100	2300	2700	5700	2400	5800	1500	
Escolas	12	13	14	15	16	17	18	19	20	21	22	23	24	
Distâncias		7600	750	5400	3300	7200	7300	3000	5300	2500	7200	3600	190	
Escolas	24	25	26	27	28	29	30	31	32	33	34	35	36	
Distâncias		4600	4100	5800	6000	7800	6400	3200	3600	6400	2800	7400	9600	
Escolas	36	37	38	39	40	41	42	43	44	45	46	48		Total
Distâncias		3000	5200	4200	1700	5800	1900	650	4400	4400	5000	4600		211790

Final		Método Evolutionary													
Escolas	47	44	6	20	32	17	35	7	21	31	11	12	27		
Distâncias		1400	750	650	550	1700	1200	1200	200	2200	52	1500	350		
Escolas	27	3	30	2	39	10	23	24	18	37	15	5	45		
Distâncias		1100	25	1700	2400	1200	700	190	800	1600	160	2300	550		
Escolas	45	36	26	38	9	34	42	43	41	25	29	14	1		
Distâncias		650	1200	850	1400	850	1400	650	1100	500	2800	350	95		
Escolas	1	13	33	22	19	46	4	16	28	40	8	48		Tota	
Distâncias		350	1000	1800	130	5500	500	190	550	3300	1600	1000		5224	

Fonte: elaborada pelos autores (2020)

Início		Google Maps													
Escolas	47	1	2	3	4	5	6	7	8	9	10	11	12		
Distâncias		7300	4200	1900	6800	4000	4100	2300	2700	5700	2400	5800	1500		
Escolas	12	13	14	15	16	17	18	19	20	21	22	23	24		
		nanan													

Tabela 4 – Distâncias da Entrada 2, passando pelas 46 escolas e indo para a Saída(entrada) 1

In E D Distâncias 3300 | 7200 7300 3000 Escolas Distâncias Escolas Total 4400 | 4400

Final						Méte	odo Ev	olution	ary					
Escolas	47	8	40	20	32	6	17	31	11	27	3	30	2	
Distâncias		1000	1500	1500	550	600	1800	2900	52	1800	1100	25	1700	
Escolas	2	39	10	23	24	18	28	16	46	4	37	15	36	
Distâncias		2400	1200	700	190	800	2800	550	700	500	2900	160	2600	
Escolas	36	9	34	42	43	41	25	29	14	1	13	33	38	
Distâncias		1300	850	1400	650	1100	500	2800	350	95	350	1000	550	
Escolas	38	26	19	22	5	45	12	21	7	35	44	48		Total
Distâncias		900	1000	130	1900	550	4700	750	200	1100	2400	1300		55902

Fonte: elaborada pelos autores (2020)

Segundo a Tabela 3, a rota otimizada é de 52242 metros, com redução de 75,3% em relação a rota inicial de 211790 metros. O tempo para percorrer essa distância é de 175 minutos. Na Tabela 4, a otimização resultou em uma distância de 55902 metros, com redução de 73,6% da rota inicial de 211990 metros, sendo necessários 163 minutos para percorrer.

Comparando as 4 rotas a menor distância foi da Tabela 3 com 52242 metros e tempo de 175 minutos e o menor tempo foi da Tabela 4 com 163 minutos percorrendo 55902 metros. Se for priorizar tempo a escolha deve ser a em relação a rota otimizada da Tabela 4, se for priorizar distância a escolha deve ser em relação a rota otimizada da Tabela 3.

4.2 Utilizando 2 caminhões para fazer as entregas

Distâncias

Visto que a rota otimizada de menor tempo foi de 163 minutos, referente a Entrada 2 com a Saída (entrada) 1, que é um tempo considerável uma vez que o caminhão tem que descarregar em 46 escolas, aumentando o tempo total do percurso, foram feitas mais duas tabelas, agora com 2 caminhões. Um caminhão saindo da entrada 1 e passando por 23 escolas, e outro caminhão partindo da entrada 2 e passando por outras 23 escolas.

A Tabela 5 demonstra os resultados atingidos para o caminhão saindo da entrada 1.

Tabela 5 – Distância.	em metros	da entrada 1	com 23 escolas
Tabela 5 – Distancia.	cm menos.	ua ciiti aua i	LUIII 23 ESCUIAS

						, -		,						
Início							Google	e Maps						
Escolas	24	1	2	3	4	5	6	7	8	9	10	11	12	İ
Distâncias		1400	1800	1600	2600	3000	1700	2900	750	200	6400	550	190	Ī
Escolas	12	13	14	15	16	17	18	19	20	21	22	23		Total
Distâncias		2800	160	7800	52	5900	6500	6800	1800	1300	2700	6100	1000	66002

Final	Método Evolutionary													
Escolas	24	1	3	10	11	18	12	13	14	20	17	21	19	
Distâncias		1400	800	4200	550	700	500	2800	160	2700	850	350	800	
Escolas	19	22	6	5	15	16	7	8	9	2	4	23		Tota
Distâncias		1300	2700	1900	2700	52	2000	750	200	800	1300	2800	1000	3331

Fonte: elaborada pelos autores (2020)

De acordo as Tabela 5, o caminhão saindo pela entrada 1 conseguiu, após a otimização feita pelo Método Evolutionary, diminuir por volta de 50% a distância a ser percorrida, ou seja, de 66002 metros para 33312 metros, e o tempo que leva para se fazer tal rota é de 86 minutos.

Para a entrada 2, a Tabela 6 expressa os seguintes resultados:

Tabela 6 – Distâncias, em metros, da entrada 2 com 23 escolas

Início	Google Maps													
Escolas	24	1	2	3	4	5	6	7	8	9	10	11	12	i
Distâncias		1100	1500	650	2100	1700	190	4200	3900	1400	3700	3300	3500	l
Escolas	12	13	14	15	16	17	18	19	20	21	22	23		Total
Distâncias		5800	1700	2700	350	1000	1300	1700	1400	4100	2900	1100	6400	57690

					Mét	odo Ev	olution	nary					
24	3	2	4	8	12	18	17	19	22	23	20	16	
	1400	650	1200	750	1500	400	750	850	900	1100	750	2600	
16	15	11	7	21	14	10	13	5	9	6	1		Total
	350	100	2700	650	1700	650	1300	2300	700	800	2000	850	26950
	1.0	1400 16 15	1400 650 16 15 11	1400 650 1200 16 15 11 7	1400 650 1200 750 16 15 11 7 21	24 3 2 4 8 12 1400 650 1200 750 1500 16 15 11 7 21 14	24 3 2 4 8 12 18 1400 650 1200 750 1500 400 16 15 11 7 21 14 10	24 3 2 4 8 12 18 17 1400 650 1200 750 1500 400 750 16 15 11 7 21 14 10 13	1400 650 1200 750 1500 400 750 850 16 15 11 7 21 14 10 13 5	24 3 2 4 8 12 18 17 19 22 1400 650 1200 750 1500 400 750 850 900 16 15 11 7 21 14 10 13 5 9	24 3 2 4 8 12 18 17 19 22 23 1400 650 1200 750 1500 400 750 850 900 1100 16 15 11 7 21 14 10 13 5 9 6	24 3 2 4 8 12 18 17 19 22 23 20 1400 650 1200 750 1500 400 750 850 900 1100 750 16 15 11 7 21 14 10 13 5 9 6 1	24 3 2 4 8 12 18 17 19 22 23 20 16 1400 650 1200 750 1500 400 750 850 900 1100 750 2600 16 15 11 7 21 14 10 13 5 9 6 1

Fonte: elaborada pelos autores (2020)

No que tange a entrada 2 da Tabela 6, o ganho foi de 53,3%, levando 88 minutos para fazer toda a rota. Nota-se que a distância diminuiu de 57.690 metros, pelo Google Maps, para 26.950 metros após a otimização feita pelo Método Evolutionary, tornando-a a rota de menor distância. Somando as 2 distâncias 33312m mais 26950m é igual a 60262 metros e o tempo será o maior de 88 minutos.

Em termos de economia a melhor opção seria utilizar 1 caminhão conforme a Tabela 3, mas como o tempo de descarregamento deve ser considerado, pode ocorrer de alguma escola ficar sem a entrega dos ingredientes para fazer a merenda no dia seguinte, se isto vier a ocorrer a opção a ser utilizada deve ser de 2 caminhões.

O Quadro 2 demonstra os resultados obtidos em distância e tempo:

Quadro 2 - Resultados obtidos pelo Método Evolutionary

1 Caminhão	Distância em metros	Tempo em minutos
Entrada 1	52927	177
Entrada 2	57907	183
Entrada 1 - Saída(entrada) 2	52242	175
Entrada 2 - Saída(entrada) 1	55902	163

2 Caminhões	Distância em metros	Tempo em minutos
Entrada 1	33212	86
Entrada 2	26950	88

Fonte: elaborado pelos autores (2020)

5 CONSIDERAÇÕES FINAIS

Após o estudo deste artigo, observa-se que fazer a roteirização por meio do Google Maps não é a maneira mais eficiente e só funciona para até 10 pontos. No entanto, o Google Maps é importante na fase de coleta de dados e para desenhar a rota, além de nos dar a distância que será percorrida e o tempo que levará para fazer o percurso.

Por conta de ter muitas escolas para fazer as entregas, pensou-se também ter mais uma opção para fazer as entregas, que foi a de dividir as escolas para dois caminhões, visto que poderia acontecer atrasos nas entregas, devido ao tempo gasto para percorrer a rota, somando também ao tempo gasto para descarregamento. Em contrapartida, a distância percorrida somando os dois caminhões é maior do que a menor distância percorrida por um caminhão após os resultados da otimização.

Conclui-se com este artigo a eficiência do Método Evolutionary que contempla um número excessivamente maior de pontos que o Google Maps e, após feita as restrições e com o objetivo de minimizar, ele apresenta uma diminuição expressiva nas distâncias a serem percorridas em mais de 70% com 1 caminhão e por volta de 50% com dois caminhões, com isso diminuindo consideravelmente o custo e o tempo para as entregas dos ingredientes para fazer a merenda nas 46 escolas da cidade de Barretos.

REFERÊNCIAS

BALLOU, R. H. **Gerenciamento da Cadeia de Suprimentos**. 5. ed.: Logística Empresarial. Porto Alegre. Bookman Editora, 2009

BERTAGLIA, P.R. Logística e o gerenciamento da cadeia de abastecimento. 4. ed. São Paulo: Saraiva Educação S.A, 2020.

BRANDALISE, L. T. Administração de materiais e logística. Porto Alegre. Simplíssimo Livros Ltda, 2017.

COOPER, D. R.; SCHINDLER, P. S. **Métodos de Pesquisa em Administração**. 12. ed. Porto Alegre. McGraw Hill Brasil, 2016.

DA FONSECA, R. C. V. **Metodologia do Trabalho Científico**. Curitiba. IESDE BRASIL S.A., 2016.

DORNIER, P-P. et. al. **Logística e Operações Globais: Texto e Casos**. 1. ed. 2000/6. reimpr. 2007. São Paulo: Atlas, 2007.

FONSECA, J.J.S. **Metodologia da Pesquisa Cientifica**, 2002. Disponível em . Acesso em: 17 out. 2020.

FOREMAN, J. W. Data Smart: Usando Data Science para transformar informação em insight. Rio de Janeiro. Alta Books Editora, 2018.

GASPAR-CUNHA, A; TAKAHASHI, R; ANTUNES, C. H. Manual de computação evolutiva e metaheurística. Minas Gerais. UFMG, 2013.

GIL, A.C. Como elaborar projetos de pesquisa. 4. ed. São Paulo, Atlas, 2002

GOULART, V.D.G.; de CAMPOS, A. Logística de Transporte - Gestão Estratégica no Transporte de Cargas. São Paulo: Saraiva Educação S.A, 2018.

HILLIER, F. S.; LIEBERMAN, G. J. **Introdução à Pesquisa Operacional**. 9. ed. Porto Alegre. AMGH Editora LTDA, 2013.

LANES, R. M.; GRECO, M. Aplicação de um método de otimização topológica evolucionária desenvolvido em script python. 2013. Disponível em: http://www.seer.ufu.br/index.php/cieng/article/view/22636/20069>. Acesso em: 25 Mai 2018.

LOESCH, C.; HEIN, N. **Pesquisa Operacional: Fundamentos e modelos**. São Paulo. Saraiva Educação S.A., 2017.

LONGARAY, A. A. Introdução à pesquisa operacional. São Paulo. Saraiva Educação S.A., 2017

NOVAES, A. G. Logística e gerenciamento da cadeia de distribuição. 2. ed. Rio de Janeiro. Elsevier, 2007.

PREFEITURA MUNICIPAL DE BARRETOS. **Educação Barretos**, 2020. Disponível em: https://www.barretos.sp.gov.br/secretaria-educacao. Acesso em: 12 de mai. de 2020.

REBOUÇAS, R. S. **Problema do Caixeiro Viajante com Coleta de Prêmios e Janelas de Tempo**. 2016. Dissertação (Mestrado em Matemática Aplicada) - Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, São Paulo.

SILVA, A.F.; OLIVEIRA, A.C. Algoritmos genéticos: alguns experimentos com os operadores de cruzamento ("Crossover") para o problema do caixeiro viajante assimétrico. XXVI ENEGEP – Fortaleza – CE, 2006. Disponível em: http://www.abepro.org.br/biblioteca/enegep2006_tr460314_7093.pdf. Acesso em 18 de out de 2020.