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PRINCIPAL COMPONENTANALYSIS WITH NEURAL NETWORK AND
DNA SEQUENCE ANALYSIS

Marcus Rogério de OLIVEIRA'

ABSTRACT

The Artificial Neural Networks are versatile tools for a numberofapplications. VV1th their many configuritions
ofparameters and architectures, Artificial Neural Networks are used in Bioinforrnatics and other areas. This
work presents an Artificial Neural Network that implements Principal Component Analysis (PCA) and performs
DNA sequence analyses.
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INTRODUCTION

Nucieic acid and protein sequences contain information ofinterest to molecular biologists since the genome
forms the bl ueprint of an organism (Cathy. 2000). As the molecular data continues to grow exponentially,
computacional tools and techniques are needed to identify the features, functions and structure of genes.

Artificial Neural Networks are versatile tools for a number of applications. With their many features and
capabilities for recognition, ge-neralizations and classification, Artificial Neural Networks are used in
Bioinformatics and other areas. Recently, Neural Networks have been used for statistical techniques that can
be used in Genome studies (Oja, l99l ). Principal Component Analysis (PCA) is one of them. In the üeld of
data analysis, it is important to reduce the dimensionality of data. because it will extract knowledge from the
data. As a method ofdimensionality reduction, PCA has been applied in various areas, such as data compression
and pattern recognition (Hote-lling, 1993).

The neuron model for PCA consists of a neuron derived from the original formulation of the l-iebbian Neural
Network Neuron. This model leads to a behaviour where the unit is able to extract from its inputs the statistically
most significant factor. ln fact. in PCA, n dimensional redundant data vectors, which are correlated to each
other. are transformed into certain s dimensional data vectors (s < n) orrhogrmal to each other. These
vectors give the principal directions along which the data can cloud mostly stretched. The principal components
are the projection of the data set on eigenvectors of principal directions. The first principal components
ranked with their eigenvalues in descending order explain the most variance of the data set and the last
explains the least.

Principal Component Neural Networks (PCNN ) are mainly used for classification and feature extraction.
Because the PCA makes classification by extracting the most important information for classification and
removing the correlation between the attributes, it will be used for NucleidAcid Sequence comparison and
analysis.
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Nucleic Acid Sequence Analysis

Proteins

A protein is typically built of a series of basic blocks called amino acids, chained togetherin a linear sequence
ofblocks. Amiiio acids may come 'in a variety of shapes and properties: they may be small or bulky hidrophobic
or hidrophyllic, electrically charged or neutral, etc. hence allowing for very complex shapes and interactions to
be produced.
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Figure 1. Proteins Structures

Amino acids are common]y referred to by name or by an abbreviation, usually in three or one letter This
allows for more efficient descriptions ofhow they are chained together to build a protein

Table l.AminoAcids
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Nucleic Acids

For Nucleic Acids, the number ofbasic building blocks is a lot smaller, each nucleic acid chain beiiig composed
ofseries ofonly four possibledifferent nucleotides which furthernioiie provide for a very limited set of interactions.

Nucleic acids come in two types: DNA (DeoxyriboNucleic Acid) and RNA (RiboNucleic Acid). Both of
them consist of a series ofnucleotides that are glued one after tire other to constitute the sequence ofblocks
that make up the functionfl chain.

Nucleotides are composed of a phosphatc group, a sugar (ribose in RNA, and deoxyiibose in DNA) and a
base which marks the specific difference among nucleotides. The base may be one of guanine, cytosine,
adenine and thymine in the case of DNA or guanine, cytosine, adenine or uracil for RNA. They can be
referred to by tlieir one letter abbreviations G, C, A, T and U. interactions are mainly driven by the stablishment
of hydrogen bonds, which can only be established among thymine (or uracil) and adenine (two hydrogen
bonds) and cytosine and guanine (three hydrogen bonds).
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Figure 2. Helix Stnicture of DNA

The main role ofnuclcic acids is to convey all the genetic information needed to make proteins and control the
building process. Protein sequences are coded by nucleic acids using groups three ofnucleotides that code
for a given amino acid: the code is more or less universal with little cxceptions, and includes redundancy to
increase the fidelity of the reading process when making duplicates or translating the information:
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Table 2. A combination of 3 Nucleic Acids corresponds to l Amin

UUhe UC Ser UA T G Cys
Che CC Ser AC T GC Cys

J Leu C Ser UAA Sto ___GA Stoa
VW CU. c:__ ser JAG sm UGGTYPcuu fšll __1;o ___ is GU %

UC cu CCC ro CAC is CGC rg;
UA eu CA Pro CAA Gln
UG eu TCG ro CAIC; ,ih CFA a

GG rg
Z le CU Usn GU Ser _
UC le CC h AÇ sn _ GC Ser l

AU Ile ACA h _AA ys ___GA fg__
U l\/let __cG h AGL s G ri

al GCU la GA s GG :ly
UC al GCÍC, la GAC __ s GGÇ __i§z C

JU al GCA 'ia GAA Giu GGA

o Acid

C _ _ ly
ia Aocnu GGGV,1ysi*GU CG

Sequence Comparison

An alignment is an arrangement of two sequences, which shows where the two sequences are similar, and
Where they differ. An optima] alignment, ofcourse, is one that exhibits the most similarities, and the least
differences. Broadly. there are three categories ofmethods for sequence comparison:

° Segment methods compare all overlapping segments of a predetcrmined length (e.g., 10 amino acids)
from one sequence to all segments from the other. This is the approach used in dotplots.

' Optimal global alignment methods allow the best overall score for the comparison of the two sequences
to be obtained. including a consideration of gaps. These programs align sequences over their whole length.

- Optimal local alignment algorithms seek to identify the best local similarities between two sequences also
including explicit consideration of gaps. Aligmnent may only be over a short span of sequence.

The basic idea behind the sequence alignment programs is to align the two sequences in such a way as to
produce the highest score - a scoring matrix is used to add points to the score for each match and subtract
them for each mismatch. The matrices commonly used for scoring protein alignments more complex than
the simple match/mismatch matrices used for DNA sequences such as the one we saw earlier; the scores that
form the protein matrices are designed to reflect similarity between the different amino acids rather than simply
scoring identities. Over time various mutations occur in sequences; the scoring matrices attempt to cope with
mutations, but insertions and deletions require some extra parameters to allow the introduction ofgaps in the
alignment. There are penalties both for the creation of gaps and for the extension ofexisting ones; the default
gap parameters given in al ignment programs have been found to be empirically correct with test sequences
but you should experiment with different gap penalties (Berg, 2002).
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Principal ComponentAnalysis (PCA)

PCA is a way of identifying patterns in data, and expressing the data in such a way as to highlight their
similarities and differences. Since patterns in data can be hard to find in data ofhigh dimension, where the
facility ofgraphical representation is not available, PCA is a powerful tool for analysing data.

Principal component analysis (PCA) involves a mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) numberofuncorrelated variables calledprincipal components' (Dunteman,
1989). The first principal component accounts for as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining variability as possible. Traditionally, principal
component analysis is performed on a square symmetric matrix of type SSCP (pure sums of squares and
cross products), Covariance (scaled sums of squares and cross products). or Correlation (sums of squares
and cross products from standardized data). The analysis results for objects of type SSC? and Covariance
do not differ, since these objects only differ in a global scaling factor. A Correlation object has to be used ifthe
variances ofindividual va.riates differ much. or if the units of measurement ofthe individual variates differ.

The mathematicai technique used in PCA is called eigen analysis: eigcnvalues and eigenvectors of a square
symmetric matrix with sums of squares and cross products. The eigenvector associated with the largest
eigenvalue has the same direction as the frstprincipal component. The eigenvector associated with the second
largest eigenvalue determines the direction of the second principal component. The sum of the eigenvalues
equals the trace ofthe square matrix and the maximum number ofeigenvectors equals the numberofrows (or
columns) of this matrix.

Mathematical foundations

Principal component analysis is based on the statistical representation ofa random variable. Suppose a random
vector population X, where

¡ .

ar = (:1:¡,...,:r,,)'

and the mean of that population is denoted by

fez == E{°fJ
and the covariance matrix of the same data set is

Cz = Ei (X - /alt* W ltzzlwl
The components of Uai , denoted by aii, represent the covariances between the random variable
components 1'6 and 31; _ The component fita' is the variance of the component 3.1 . The variance of a
component indicates the spread of the component values around its mean value. If two components 354
and 113; of the data are uncorrelated, their covariance is zero {f3,¡¡- -_; ;_3¡‹,¡ z Q: .
The covariance matrix is, by definition, always symmetric.
From a sample of vectors X1, . . . , XM , PCA can calculate the sample mean and the sample covariance
matrix as the estimates of the mean and the covariance matrix.
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From a symmetric matrix such as the covariance matrix, PCA can calculate an orthogonal basis by finding its
eigcnvalu es and eigenvectors. The eigenvectors Bi and the corresponding eigenvalues Ã; are the

solutions of the equation

(3_.,,e,.¡ : z\¿e.¡, i : 1, ...,n

For simplicity it is assumed that the are distinct. These values can be found, for example, by finding the
solutions ofthe characteristic equation

IC,-z\I|=fl

where the 1 is the identity matrix having the same order than (.},and the the denotes the determinant
of the matrix. If the data vector has n components, the charactcrmtzc equation becomes of order n. This is
easy to solve only if n is small. Solving eigenvalues and corresponding eigenvectors is a non-trivial task, and
many methods exist. One way to solve the eigenvalue problem is to use a neural solution to the problem (Oja,
1983). The data is fed as the input, and the network converges to the wanted solution. By ordering the
eigenvectors in the order ofdescending eigenvalues (largest first), one can create an ordered orthogonal basis
with the first eigenvector having the direction of largest variance of the data. In this way, we can find directions
in which the data set has the most significant amounts of energy. Suppose one has a data set of which the
sample mean and the covariance matrix have been calculated. Let Abe a matrix consisting ofeigenvectors
of the covariance matrix as the row vectors.
By transforming a data vector x, we get

Y = A (X -- mz]

which is a point in the orthogonal coordinate system defined by the eigenvectors. Components ofy can be
seen as the coordinates in the orthogonal base. lt can reconstruct the original data vector x from y by

_'I`x-A y+¡i,,

using the property of an oithogonal matrix A"1 : AT . The AT is the transpose of a matrix À .
The original vector X was projected on the coordinate axes defined by the orthogonal basis. The original
vector was then reconstnicted by a linear combination of the oithogonal basis vectors. lnstead ofusing all the
eigenvectors of the covariance matrix, we may represent the data in terms ofonly a few basis vectors of the
orthogonal basis. If it is denoted by the matrix having the K first eigenvectors as rows byA- K, a similar
transformation can be created as seen above

3' = ÂKÍX -' ilzi
and

._ 'Í'× ~ Az y+1›.
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This means that the original data vector can be projected on the coordinate axes having the dimension Kand
transforming the vector back by a linear combination of the basis vectors. This minimizes the mean-square
error between the data and this representation With given number ofeigenvectors. lfthe data is concentrated
in a linear subspace, this provides a way to compress data without losing much information and simplifying the
representation. By picking the eigenvectors having the largest eigenvalues we lose as little information as
possible in the mean-square sense. One can e.g. choose a fixed number ofeigenvectors and their respective
eigenvalues and get a consistent representation, or abstraction ofthe data. This preserves a varying amount of
energy of the original data. Altematively, we can choose approximately the same amount ofenergy and a
varying amountofeigenvectois and their respective eigenvalues. This would in tum give approximately consistem
amount of information in the expense ofvarying representations with regard to the dimension of the subspace
(Oja, 1983).

Neuton Model as a Principal Component Analyser

It is well known (Diamantras, l986) that a 3 layer (including the input and the output layers) neural network
model With linear transfer functions at the hidden layer has the rank reducing capability, Where the specific
rank is effected by the number ofunits at the hidden layer. This is a network version of reduced-rank (RR)
regression (Anderson, 1993) which is also known as PCA of instmmental variables and redundancy analysis.
The usual PCA follows when inputs and outputs coincide in RR regression analysis. The network version of
PCAis not interesting in itself, because there ate other more efficient and precise algorithms available (Takane,
1999). It becomes interesting when the model is extended to nonlinear PCA by including two additional
hidden layers with nonlinear transfer functions, one between the input layer and the middle layer and the other
between the middle layer and the output layer.

The neuron model considered here is as follow (Hotelling, 1993). The neuron receives a set of n scalar-
valuedinputs: š l , _ _ _ , ,gn ch mey be assumed to represent firing frequencies in presynaptic fibers;
in some models, tne zero level ts defined so that negative values for the effective inputs become possible)
through n synaptic junctions with coupling strngths 111 , . . . , pt" The unit sends out an efferent signal
¡1 . According to many models of neuron networks, the input-output relationship is linearized to read

'7 = 2 Hifi- '
úzzi

In most recent models, thejunction strengths [15 have been assumed variable in time according to some
version of the Hebbian hypothesis: the efficacies grow stronger when both the pre and postsynaptic signals
are strong. l-lowever, as the basic Hebbian scheme would lead to unrealistic growth of the efficacies, a
saturation or normalization has usually been assumed. This leads typically to the following type of learning
equatton:

(HI): #z(r)+vfi(f) 1)‹:.‹
”* iírzi on) + z››i‹z›‹:.~‹z›Fi

where 'y is a positive scalar.

The form of the denominator is due to the use ofEnclidean vector norm. The sum of the squares of /1¡( Í)
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remains equal to one. This particular form ofnormalization is very convenient from a mathematical point of
view. The actual reason for a normalization would be the competition of the synapses of a given neuron over
some limited resource factors that are essential in efficacy growth. It should be realized that the synaptic
efficacies /ld Í) need not be linearly related to euch resource factors and thus in the denominator of the
equation above there is no reason to prefer e.g. the linear sum to some other form like the one suggested
there. The equation above produces a very specific type of behaviour for the model neuron: if the input
vectors [§¡(t), . . . , f,,(!)]T for I = l, 2, . . . are regarded as a vector-valued stochastic process, the
the neural unit tends to become a principal component analyser for the input process.

Neural Network Design for PCA

Consider a network with n inputs, h<ri linear hidden units, and n linear output units. Given an input, the goal
is to reproduce it at the output so the network acts as autoencoder, mapping an input pattern to itself.

9 4)X ® did
Q .

,I
M M@ 3

Figure 3. An autoencoder network maps an input vector to itself reducing dimensionality

The hidden layer acts as bottleneck tha forces the network to form a compressed representation for the data.
Tha hidden layer activities ane a linear functions of the inputs but the hidden çayer is smaller then the input
dimension so some informations must necessarily be lost, in general. The best hidden layer nepresentarion will
be on that preserves as much information about the input as possible. ideally, it will ignore nonessential noise
and reproduce only the most significant features of the input pattern.

The optiinal hidden unit weights are determined by a set of vectors spanning the singular value decomposition
of the input data. That is, the ideal representation formed at the hidden layer span the same space as the h
eigenvectors corresponding to the h largest eigenvalues of the covariance matriz of the training data. The
network is linear so it cam be collapsed into a single linear tmnsformation x=Fx. The rank ofF is limited in the
preceding by h, the dimension of the hidden layer.

Many papers have been written on the links between neural networks and principal components analysis and
just as linear autoencoder implements a form of PCA, its has been shown that a single-hidden-layer nilar
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network tiained to perfoem classification with l-of-N target representation implements a form ofdiscríminate
analysis .

Experiment

The nucleotides from a gene sequence where convetted in real numbers between 0.2 and 0.7. From position
0, the real numbers representing the nucleotides were added by a factor of value 0.0002. This technic makes
the position of the nucleotide in the sequence relevant.

Example of the data before the conversion:
atgccctcac aggaaacaga attcaaacac ttagacaatc aatataaaga tgaagtgaac gctcttaaag agaagttgga aaatttgcag gaacaaatca
aagttcaaaa aaggatagaa gaacaagaaa aaccaagaaa atggtgggga ctatggcgaa aaatagatga ttcagttaaa aagaaagttc cagaaltgcg
atttaaagga tttacggatg attgggaaga gcgtaagttg ggagaattat ctaatattgt gggcggtgga acaccaagta catcgaactc tgaatactgg
gacggtgata ttgactggta tgctccagct gaaattggag aacaanggta tgttagtaaa agtaaaaaga ctattactga actaggteta aagaagagct
cagctagaat ttlaccagta ggaactgtct tatttacttc tcgtgctggt atcggaaaca ccgctatatt aggtaaagaa gctacaacta accaagggtt tcaatcaatt
gttcctaatc caaataaact tgatagttat tttatttatt caagaactna tgaacttaag cgglatggtg aagtcaccgg tgcaggalct acttttgttg

Example of the data after the conversion:
0.02
0025005 A
0035014
0.030017999999999996
0030023999999999995
0.()3m2 
0025029999999999997
0.03{I)4l 6
0.02003l999999999998
0.030053999999999994
0.020043999999999996
0035084
0.03 
0020055999999999994

After the converstion, all the nucleotides are represented by real numbers in with the position is gamnteed. So,
the sequence can be submitted to the Neural Network.

The results can be observed by the follow program output:
Input file name: dnlaƒflai
Nu. of mws. n = 1239
No. of cofs. m = 2
Input dam sr1mp!e_ƒk›i.'‹›ws as a check, first 4 values.
value = 0.02
value = 0.02
value = 0020004
value = 0025005

Variable means:
0,0297 0, 0297

Variable standard deviaiirins;
0,0068 0.0068

SSCP or sums-of-squares and cross-products mmrix
(Note: correlation: in this implementation)
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1.00 0.10
0.10 1.00

Eigenveclors fleftmosr (rol <--> largest aval):

0. 7071 -0. 7071
0. 7071 0.7071

Eigenvalues and as cumulativa percenzages:
1 ,(1991 0,9009

54, 9565 1000000

Row projectlons in new principal cornponent space: (parcial)

-0.0574 0.0001
-0.0427 0.0148
0.0312 -0. 0002
0.0017 -0.0001
-0.0131 0.0147
-0.0131 0.0147
-0. 0426 0.0148
-0.0130 0.0147

Column pr'0jection.s in new principal. compomponent. space.
0,7413 -0,6711
0,7413 0,6711

The output above shows the result of the comparison of2 genes of the same family organism. The column
projections demonstrate the high degree ofsimilanty. The eigevalues, the standard deviation and the mean are
identieal. This demonstrates that the Neural Network PCA can identify similarities between gene sequences.

After 10 experiments with the same family ofgenes, all of then converged to the same result: all the genes
belong to the same organism family. With 10 experiments using genes sequence ofdifferent families oforganisms,
the NNPCA converged showing demonstrating that the genes are different. So, 100% of the experiment
brings optimal results.

RESUMO

As Redes Neurais artificiais podem ser utilizadas para um grande número de aplicações das mais diferentes
áreas. Variações de parâmetros e arquiteturas fazem com que uma rede neural responda de maneira diferente
e específica. Por esse motivo, são utilizadas como solução em problemas diversos. Este trabalho apresenta
um tipo especial de Rede Neural que implementa o método de Análise de Componentes Principais e efetua
análi ses de seqüências DNA.

PALAVRAS-CHAVE: Redes NeuraisAitificiai s. Análise de Componentes Principais. Modelo de Neurônio
d.e I-lebbian.
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